Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T13:06:58.668Z Has data issue: false hasContentIssue false

Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C

Published online by Cambridge University Press:  31 January 2011

Shiliang Wang
Affiliation:
State Key Laboratory for Powder Metallurgy, and School of Physics Science and Technology, Central South University, Changsha 410083, People’s Republic of China
Yuehui He*
Affiliation:
State Key Laboratory for Powder Metallurgy, and School of Physics Science and Technology, Central South University, Changsha 410083, People’s Republic of China
Jian Xu
Affiliation:
State Key Laboratory for Powder Metallurgy, and School of Physics Science and Technology, Central South University, Changsha 410083, People’s Republic of China
Yao Jiang
Affiliation:
State Key Laboratory for Powder Metallurgy, and School of Physics Science and Technology, Central South University, Changsha 410083, People’s Republic of China
Baiyun Huang
Affiliation:
State Key Laboratory for Powder Metallurgy, and School of Physics Science and Technology, Central South University, Changsha 410083, People’s Republic of China
Jin Zou*
Affiliation:
School of Engineering, and Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
Yong Wang
Affiliation:
School of Engineering, and Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
C.T. Liu
Affiliation:
Materials Science and Engineering Department, The University of Tennessee, Knoxville, Tennessee 37886-2200
P.K. Liaw
Affiliation:
Materials Science and Engineering Department, The University of Tennessee, Knoxville, Tennessee 37886-2200
*
a)Address all correspondence to these authors. e-mail: yuehui@mail.csu.edu.cn
b)Address all correspondence to these authors. e-mail: j.zou@uq.edu.au
Get access

Abstract

In this study, we report the growth of metallic tungsten nanowires induced by alloy catalysts (Fe–Ni) at a temperature of 850 °C. The synthesized tungsten nanowires have bottom diameters of 100 to 400 nm and tip diameters of <80 nm, and show a well-defined single-crystalline structure. The formation of the (Fe,Ni)-catalyzed W nanowires should be controlled by the vapor–solid–solid mechanism, rather than the traditional vapor–liquid–solid mechanism, because the growth temperature is significantly below the lowest eutectic temperature (1455 °C) of the Fe–Ni–W ternary system. Our study demonstrates the feasibility of synthesizing metallic nanowires via metal-catalyzed methods, which may be extended to the synthesis of some other metallic nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F.Yan, H.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003CrossRefGoogle Scholar
2Law, M., Goldberger, J.Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 2004CrossRefGoogle Scholar
3Walter, E.C., Ng, K., Zach, M.P., Penner, R.M.Favier, F.: Electronic device from electrodeposited metal nanowires. Microelectron. Eng. 61, 555 2002CrossRefGoogle Scholar
4Whitney, T.M., Jiang, J.S., Searson, P.C.Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 1993CrossRefGoogle ScholarPubMed
5Keating, C.D.Natan, M.J.: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 2003CrossRefGoogle Scholar
6Patolsky, F., Weizmann, Y.Willner, I.: Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692 2004CrossRefGoogle ScholarPubMed
7Zach, M.P., Ng, K.H.Penner, R.M.: Molybdenum nanowires by electrodeposition. Science 290, 2120 2000CrossRefGoogle ScholarPubMed
8Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G.Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 2002CrossRefGoogle ScholarPubMed
9Wang, J.Li, Y.: Rational synthesis of metal nanotubes and nanowires from lamellar structures. Adv. Mater. 15, 445 2003CrossRefGoogle Scholar
10Choi, H.Park, S.H.: Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126, 6248 2004Google Scholar
11Vaddiraju, S., Chandrasekaran, H.Sunkara, M.K.: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 2003CrossRefGoogle ScholarPubMed
12Zhou, J., Deng, S., Gong, L., Ding, Y., Chen, J., Huang, J., Chen, J., Xu, N.Wang, Z.L.: Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application. J. Phys. Chem. B 110, 10296 2006CrossRefGoogle ScholarPubMed
13Hong, B.H., Bae, S.C., Lee, C.W., Jeong, S.Kim, K.S.: Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348 2001CrossRefGoogle Scholar
14Sun, Y., Gates, B., Mayers, B.Xia, Y.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 2002CrossRefGoogle Scholar
15Lee, Y.H., Choi, C.H., Jang, Y.T., Kim, E.K.Ju, B.K.: Tungsten nanowires and their field electron-emission properties. Appl. Phys. Lett. 81, 745 2002CrossRefGoogle Scholar
16Umnov, A.G., Shairatori, Y.Hiraoka, H.: Giant field amplification in tungsten nanowires. Appl. Phys. A 77, 159 2003CrossRefGoogle Scholar
17Trentler, T.J., Kickman, K.M., Goel, S.C., Viano, A.M., Gibbons, P.C., Buhro, W.E.: Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 270, 1791 1995CrossRefGoogle Scholar
18Holmes, J.D., Johnston, K.P., Doty, R.C.Korgel, B.A.: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 2000CrossRefGoogle ScholarPubMed
19Morales, A.M.Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 1998CrossRefGoogle ScholarPubMed
20Duan, X.F.Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 20003.0.CO;2-Y>CrossRefGoogle Scholar
21Wu, Y.Yang, P.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 2001CrossRefGoogle Scholar
22Kamins, T.I., Williams, R. Stanley, Basile, D.P., Hesjedal, T.Harris, J.S.: Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 89, 1008 2001Google Scholar
23Persson, A.I., Larsson, M.W., Stenstrom, S., Ohlsson, B.J., Samuelson, L.Wallenberg, L.R.: Solid-phase diffusion mechanism for GaAs nanowires growth. Nat. Mater. 3, 677 2004CrossRefGoogle Scholar
24Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L.Seifert, W.: Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761 2005CrossRefGoogle ScholarPubMed
25Colli, A., Hofmann, S., Ferrari, A.C., Ducati, C., Martelli, F., Rubini, S., Cabrini, S., Franciosi, A.Robertson, J.: Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 153103 2005CrossRefGoogle Scholar
26Tuan, H.Y., Lee, D.C., Hanrath, T.Korgel, B.A.: Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. Nano Lett. 5, 681 2005CrossRefGoogle ScholarPubMed
27Villars, P., Prince, A.Okamoto, H.: Handbook of Ternary Diagrams ASM Materials Park, OH 1990 10671Google Scholar
28Zhang, R.Q., Lifshitz, Y.Lee, S.T.: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635 2003CrossRefGoogle Scholar
29Lassner, E.Schubert, W.D.: Tungsten: Properties, Chemistry, Technology Of The Element, Alloys, and Chemical Compounds Kluwer Academic/Plenum Publishers New York 1998Google Scholar
30Haubner, R., Schubert, W.D., Lassner, E.Lux, B.: Influence of iron and nickel on the hydrogen reduction of WO3 to tungsten. Int. J. Refract. Hard Mater. 7, 47 1988Google Scholar
31He, Y.H.Chen, L.B., Huang, B.Y.Liaw, P.K.Recycling of heavy metal alloy turnings to powders by oxidation-reduction process. Int. J. Refract. Hard Mater. 21, 227 2003Google Scholar
32Wen, Z., Zhao, M.Jiang, Q.: The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size rang. J. Phys.: Condens. Matter 12, 8819 2000Google Scholar