Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T10:56:42.760Z Has data issue: false hasContentIssue false

Growth kinetics, phase transitions, and cracking in cholesterol gallstones

Published online by Cambridge University Press:  03 March 2011

Sujeet Kumar
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627–0133
S.J. Burns
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627–0133
T.N. Blanton
Affiliation:
Analytical Technology Division, Eastman Kodak Company, Rochester, New York 14652–3712
Get access

Abstract

The growth kinetics of cholesterol gallstones have been studied by growing crystals from melted gallstones. The resulting microstructures are spherulitic which is essentially the same as the structures seen in natural gallstones prior to melting. The cholesterol crystals when observed in hot stage microscopy emerge from a unique nucleation center growing radially in the [001] direction with constant rate. The DSC thermograph of a natural gallstone is initially similar to that of cholesterol monohydrate. Upon melting, cholesterol monohydrate changes to anhydrous cholesterol; both forms are crystalline and exhibit polymorphic transformations. Synthetic stones grown from cholesterol were anhydrous and have a phase change at temperatures close to human body temperature. Optical microscopy established that this phase transformation cracks the spherulitic crystals perpendicular to the fast growth direction. Thermal expansion measurements demonstrate that upon heating, the low density, low temperature phase is transformed to a high density phase. This phase transformation and repeated cracking may prove to be useful in destroying natural gallstones, while suppressing this transformation and its associated cracking might aid in securing other solid cholesterol deposits within the human body.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, New York, 1981).CrossRefGoogle Scholar
2Skalak, R. and Chien, S., Handbook of Bioengineering (McGraw-Hill, New York, 1987).CrossRefGoogle Scholar
3Gibbons, G. F., Mitropoulos, K. A., and Myant, N. B., Biochemistry of Cholesterol (Elsevier Biomedical Press, Amsterdam, 1982).Google Scholar
4Esfahani, M. and Swaney, J. B., Advances in Cholesterol Research (The Telford Press, Philadelphia, PA, 1990).Google Scholar
5Kritchevsky, D., Cholesterol (John Wiley and Sons Inc., New York, 1958).Google ScholarPubMed
6Sutor, D. J. and Wooley, S. E., Gut 12, 55 (1971).CrossRefGoogle Scholar
7Drach, G. W., J. Urol. 141, 711 (1989).CrossRefGoogle Scholar
8Spier, H. L. and Van Seneden, K.G., Steroids 6, 871 (1965).CrossRefGoogle Scholar
9Van Putte, K., Skoda, W., and Petroni, M., Chem. Phys. Lipids 2, 361 (1968).CrossRefGoogle Scholar
10Petropavlov, N. N. and Kostin, N. F., Sov. Phys. Crystallogr. 21, 525 (1976).Google Scholar
11Loomis, C. R., Shipley, G. G., and Small, D. M., J. Lipid Research 20, 525 (1979).CrossRefGoogle Scholar
12Aho, A. J., Vilhonen, E., Peltola, S., and Lehtonen, A., Scand. J. Gastroenterology 20, 901 (1985).CrossRefGoogle Scholar
13Beens, J. M., Bills, P. M., and Lewis, D., Gastroenterology 76, 548 (1979).CrossRefGoogle Scholar
14Burns, S. J., Gracewski, S. M., Vakil, N., and Basu, A. R., Dynamic Failure of Materials: Theory, Experiments and Numerics, edited by Rossmanith, H. P. and Rosakis, A. J. (Elsevier Applied Science, New York, 1991), pp. 114126.CrossRefGoogle Scholar
15Basu, A. R., unpublished results.Google Scholar
16Kumar, S. and Burns, S. J., J. Mater. Sci.: Mater, in Medicine 4, 460 (1993).Google Scholar
17Konikoff, F. M., Chung, D. S., Donovan, J. M., Small, D. M., and Carvey, M. C., J. Clin. Invest. 90, 1155 (1992).CrossRefGoogle Scholar
18Vakil, N. and Everbach, E. C., Gastroenterology 101, 1628 (1991).CrossRefGoogle Scholar
19Schultz, J., Polymer Materials Science (Prentice Hall, Englewood Cliffs, NJ, 1974), p. 155.Google Scholar
20Keith, H. D. and Padden, F. J., J. Polymer Sci. 39, 101 (1959).CrossRefGoogle Scholar
21Keller, A. and Wills, H. H., J. Polymer Sci. 39, 151 (1959).CrossRefGoogle Scholar
22Shieh, H. S., Hoard, L. G., and Nordman, C. E., Nature 267, 287 (1977).CrossRefGoogle Scholar
23Goodby, J. W., J. Mater. Chem. 1, 307 (1991).CrossRefGoogle Scholar
24Nudelman, I., J. Cryst. Growth 130, 1 (1993).CrossRefGoogle Scholar
25Wada, Y., Igimi, H., and Uchida, K., Thermochim. Acta 210, 233 (1992).CrossRefGoogle Scholar
26Bogren, H. and Larsson, K., Biochim. Biophys. Acta 75, 65 (1963).CrossRefGoogle Scholar
27Eprecht, W., Rosenmund, H., and Schinz, H. R., Fortschr. Gebiete Roengenstrahlen Nuklearmed. 79, 1 (1953).CrossRefGoogle Scholar