Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-24T09:00:58.018Z Has data issue: false hasContentIssue false

Growth and structure of heteroepitaxial lead titanate thin films constrained by miscut strontium titanate substrates

Published online by Cambridge University Press:  01 May 2006

Yoko Ichikawa
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kyoto 619-0292, Japan
Toshiyuki Matsunaga
Affiliation:
Matsushita Techno-Research, Moriguchi, Osaka 570-0005, Japan
Mohsen Hassan
Affiliation:
Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501, Japan
Isaku Kanno
Affiliation:
Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501, Japan
Takaaki Suzuki
Affiliation:
Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501, Japan
Kiyotaka Wasa*
Affiliation:
Faculty of Science, Yokohama City University, Yokohama 236-0027, Japan
*
b) Address all correspondence to this author. e-mail: kiyotkw@hi-ho.ne.jp
Get access

Abstract

Single-crystal lead titanate [(001)PbTiO3 (PT)] thin films were heteroepitaxially grown on a miscut strontium titanate [(001)SrTiO3 (ST)] substrate by radio frequency magnetron sputtering. The PT thin films were grown via a step-flow growth. The step-flow growth enhanced the layer growth resulting in the continuous (001) single-crystal structure without a dislocated interface for the film thickness below 200 to 250 nm. The PT thin films show a small temperature variation of the lattice parameters unlikely to the bulk PT crystals due to the substrate clamping. The temperature variation of the lattice constants is discussed in terms of the thermo-elastic deformation analysis for the PT/ST heterostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wasa, K., Kitabatake, M., Adachi, H.: Thin Film Materials Technology: Sputtering of Compound Materials (Springer, William Andrew Publishing, Norwich, NY, 2004), p. 408.Google Scholar
2.Speck, J.S., Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
3.Speck, J.S., Seifert, A., Pompe, W., Ramesh, R.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications. J. Appl. Phys. 76, 477 (1994).CrossRefGoogle Scholar
4.Kwak, B.S., Erbil, A.: Domain formation and strain relaxation in epitaxial ferroelectric heterostructures. Phys. Rev. Lett. 49, 14865 (1994).Google ScholarPubMed
5.Kimoto, T., Nishino, H., Yoo, W.S., Matsunami, H.: Growth mechanism of 6H–SiC in step-controlled epitaxy. Appl. Phys. 73, 726 (1993).CrossRefGoogle Scholar
6.Wasa, K., Haneda, Y., Satoh, T., Adachi, H., Setsune, K.: Growth mechanism and structural studies of sputtered PbTiO3 thin films. J. Vac. Sci. Technol. A 15, 1185 (1996).CrossRefGoogle Scholar
7.Wasa, K., Haneda, Y., Satoh, T., Adachi, H., Kanno, I., Setsune, K., Schlom, D.G., Trolier-McKinstry, S., Gan, Q., Eom, C.B.: Basic sputtering process and ferroelectric properties of single-domain single-crystal thin films of PbTiO3. Integr. Ferroelectrics 21, 451 (1998).CrossRefGoogle Scholar
8.Tu, K.N., Mayer, J.M., Feldman, L.C.: Electronic Thin Film Science (Macmillan, New York, 1992), p. 170.Google Scholar
9.Ichikawa, Y., Adachi, H., Wasa, K.: Effects of partial oxygen pressure on the microstructure of PbTiO3 thin films during sputtering deposition. J. Surf. Sci. Soc. Jpn. 20, 464 (1999).CrossRefGoogle Scholar
10.Nagai, H.: Structure of vapor-deposited Gax In1−xAs crystals. J. Appl. Phys. 45, 3789 (1974).CrossRefGoogle Scholar
11.Theis, C.D., Schlom, D.G.: Domain structure of epitaxial PbTiO3films grown on vicinal (001) SrTiO3. J. Mater. Res. 12, 1297 (1997).CrossRefGoogle Scholar
12.Theis, C.D.: Investigation of growth and domain structure of epitaxial lead titanate thin films. M.S. Thesis, The Pennsylvania State University, State College, PA (1996), p. 97.Google Scholar
13.Gan, Q., Wasa, K., Eom, C.B.: Domain structure and surface morphology of epitaxial PbTiO3/SrRuO3 heterostructures on vicinal (001) SrTiO3 substrates. Mater. Sci. Eng. B 56, 204 (1998).CrossRefGoogle Scholar
14.Weeks, J.D., Liu, D.J., Jeong, H.C.: Dynamics of Crystal Surface and Interfaces, edited by Duxbuty, P. and Spence, T. (Plenum, New York, 1997), p. 199.Google Scholar
15.Sato, M., Uwaha, M.: Hierarchical bunching of steps in a conserved system. J. Phys. Soc. Jpn. 67, 3675 (1998).CrossRefGoogle Scholar
16.Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses (John Wiley & Sons, New York, 1960), p. 400.Google Scholar
17.Timoshenko, S.: Bending and buckling of bimetallic strips. J. Opt. Soc. Am. 11, 233 (1925).CrossRefGoogle Scholar
18.Taylor, D.: Thermal expansion data VIII, complex oxides, ABO3, the perovskite. Br. Ceram. Trans. J. 84, 181 (1985).Google Scholar
19.Rossetti, G.A. Jr., Cross, L.E., Kushida, K.: Stress induced shift of the Curie point in epitaxial PbTiO3 thin films. Appl. Phys. Lett. 59, 2524 (1991).CrossRefGoogle Scholar
20.Wasa, K., Ai, R., and Asayama, G.: Modified ferroelectric properties of the single-domain/single crystal PbTiO3 thin films with tightly bonded interface, in Superconducting and Related Oxides: Physics and Nanoengineering IV edited by Pavuna, D.. and Bozovic, I. (Proc. SPIE 4058, Bellingham, WA, 2000), pp. 295302.CrossRefGoogle Scholar
21.Wasa, K., Ichikawa, Y., Adachi, H., Kanno, I., Setsune, K., Schlom, D.G., Trolier-McKinstry, S., Gan, Q., Eom, C.B.: Interfacial structure and ferroelectric properties of PZT/SrTiO3 heterostructures on miscut (001) SrTiO3. Integr. Ferroelectrics 26, 39 (1999).CrossRefGoogle Scholar
22.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.: Ferroelctricity in ultra thin perovskite films. Science 304, 1650 (2004).CrossRefGoogle Scholar
23.Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V. Ramana, Auciello, O., Bai, G.R., Stephenson, G.B.: Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002).CrossRefGoogle ScholarPubMed
24.Kobune, M., Fujii, S., Akamatsu, K., Takayama, R., Tomozawa, A.: Pyroelectric properties of La-and Mg-modified PbTiO3 thin films. J. Ceram. Soc. of Jpn. 103, 515 (1985).CrossRefGoogle Scholar
25.Takayama, R., Tomita, Y.: Preparation of epitaxial Pb(ZrxTi1-x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. J. Appl. Phys. 65, 1666 (1989).CrossRefGoogle Scholar