Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T14:25:39.208Z Has data issue: false hasContentIssue false

Greatly enhanced broadband near-infrared emission due to energy transfer from Cr3+ to Ni2+ in transparent magnesium aluminosilicate glass ceramics

Published online by Cambridge University Press:  31 January 2011

Shifeng Zhou
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
Botao Wu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
Bin Zhu
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China; and State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
*
a) Address all correspondence to this author. e-mail: qjr@zju.edu.cn
Get access

Abstract

Cr3+/Ni2+ co-doped optically transparent magnesium aluminosilicate glass-ceramics containing MgAl2O4 nanocrystals have been prepared by heat-treatment. Greatly enhanced broadband near-infrared emission centered at 1216 nm in Cr3+/Ni2+ co-doped glass ceramics is observed when compared with the Ni2+ single-doped glass ceramics under 532 nm excitation. The observed enhancement of infrared emission is attributed to the energy transfer from Cr3+ to Ni2+ ions in the nanocrystalline phase, which leads to the emission due to 3T2(3F) → 3A2(3F) transition of octahedral Ni2+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Samson, B.N., Pinckney, L.R., Wang, J., Beall, G.H., Borrelli, N.F.: Nickel-doped nanocrystalline glass-ceramic fiber. Opt. Lett. 27, 1309 (2002)CrossRefGoogle ScholarPubMed
2.Iverson, M.V., Windscheif, J.C., Andrauskas, W.A.: Optical parameters for the MgO:Ni2+ laser system. Appl. Phys. Lett. 36, 183 (1980)CrossRefGoogle Scholar
3.Suzuki, T., Murugan, G.S., Ohishi, Y.: Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 (2005)CrossRefGoogle Scholar
4.Suzuki, T., Horihuchi, K., Ohishi, Y.: Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals. J. Non-Cryst. 57, 3613 (2005)Google Scholar
5.Zhou, S., Feng, G., Wu, B., Jiang, N., Xu, S., Qiu, J.: Intense infrared luminescence in transparent glass-ceramics containing β–Ga2O3:Ni2+ nanocrystals. J. Phys. Chem. C 111, 7335 (2007)CrossRefGoogle Scholar
6.Jouini, A., Yoshikawa, A., Guyot, Y., Brenier, A., Fukuda, T., Boulon, G.: Potential candidate for new tunable solid-state laser between 1 and 2 μm: Ni2+-doped MgAl2O4 spinel grown by the micro-pulling-down method. Opt. Mater. 30, 47 (2007)CrossRefGoogle Scholar
7.Yamaguchi, I., Tanaka, K., Hirao, K., Soga, N.: Preparation and optical properties of transparent glass-ceramics containing LiGa5O8:Cr3+. J. Mater. Sci. 31, 3541 (1996)CrossRefGoogle Scholar
8.Broussell, I., Fortin, E., Kulyuk, L., Popov, S., Anedda, A., Corpino, R.: Optical properties of α–ZnAl2S4:Cr single crystals. J. Appl. Phys. 84, 533 (1998)CrossRefGoogle Scholar
9.Bunuel, M.A., Alcala, R., Cases, R.: Spectroscopy study of Cr3+ ions in fluorochloro- and fluorobromzirconate glasses. J. Chem. Phys. 109, 2294 (1998)CrossRefGoogle Scholar
10.Rossi, F., Pucker, G., Montagna, M., Ferrari, M., Boukenter, A.: Fluorescence line narrowing study of Cr3+ ions in cordierite glass nucleating MgAl2O4 nanocrystals. Opt. Mater. 13, 373 (2000)CrossRefGoogle Scholar
11.Lipinska-Kalita, K.E., Kalita, P.E., Krol, D.M., Hemley, R.J., Cobin, C.L., Ohki, Y.: Spectroscopic properties of Cr3+ ions in nanocrystalline glass-ceramics composites. J. Non-Cryst. Solids 352, 524 (2006)CrossRefGoogle Scholar
12.Nogales, E., Cercia, J.A., Mendez, B., Piqueras, J.: Red luminescence of Cr in β–Ga2O3 nanowires. J. Appl. Phys. 101, 033517 (2007)CrossRefGoogle Scholar
13.Elejalde, M.J., Balda, R., Fernandez, J., Macho, E.: Optical properties of Cr3+ and Nd3+ in singly- and doubly-doped barium-indium-gallium-based fluoride glass investigated by time-resolved laser spectroscopy. Phys. Rev. B 46, 5169 (1992)CrossRefGoogle ScholarPubMed
14.Hong, P., Zhang, X.X., Struck, C.W., Di Bartolo, B.: Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet. J. Appl. Phys. 78, 4659 (1995)CrossRefGoogle Scholar
15.Shen, Y., Riedener, T., Bray, K.L.: Effect of pressure and temperature on energy transfer between Cr3+ and Tm3+ in Y3Al5O12. Phys. Rev. B 61, 11460 (2000)CrossRefGoogle Scholar
16.Imbert, D., Cantuel, M., Bunzli, J.C.G., Bernardinelli, G., Piguet, C.: Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices. J. Am. Chem. Soc. 125, 15698 (2003)CrossRefGoogle ScholarPubMed
17.Bovero, E., Cavalli, E., Jaque, D., Sole, J.G., Speghini, A., Bettinelli, M.: Cr3+ → Nd3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal. J. Appl. Phys. 98, 023103 (2005)CrossRefGoogle Scholar
18.Zhong, R., Zhang, J., Zhang, X., Lu, S., Wang, X.: Red phosphorescence in Sr4Al14O25:Cr3+, Eu2+, Dy3+ through persistent energy transfer. Appl. Phys. Lett. 88, 201916 (2006)CrossRefGoogle Scholar
19.Nie, Z., Zhang, J., Zhang, X., Ren, X.: Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr. Cr. Opt. Lett. 32, 991 (2007)CrossRefGoogle ScholarPubMed
20.Wu, B., Zhou, S., Ruan, J., Qiao, Y., Chen, D., Zhu, C., Qiu, J.: Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals. Opt. Express 16, 2508 (2008)CrossRefGoogle Scholar
21.Gregory, A.G., Veasey, T.J.: The crystallization of cordierite glass. J. Mater. Sci. 8, 324 (1973)CrossRefGoogle Scholar
22.Shao, H., Liang, K.M., Zhou, F., Wang, G.L., Hu, A.M.: Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass-ceramics. Mater. Res. Bull. 40, 499 (2005)CrossRefGoogle Scholar
23.Reisfeld, R., Kisilev, A., Greenberg, E., Buch, A., Ish-shalom, M.: Spectroscopy of Cr3+ in transparent glass ceramics containing spinel and gahnite. Chem. Phys. Lett. 104, 153 (1984)CrossRefGoogle Scholar
24.Wang, H., Kuang, X.Y., Mao, A.J., Yang, X.: Effect on the EPR and site symmetry of Cr3+ ions doping spinel crystals: A complete energy matrices study. Chem. Phys. Lett. 436, 194 (2007)CrossRefGoogle Scholar
25.Kim, Y.K., Jang, H.M.: Lattice contraction and cation ordering of ZrTiO4 in the normal-to-incommensurate phase transition. J. Appl. Phys. 89, 6349 (2001)CrossRefGoogle Scholar
26.Newnham, R.E.: Crystal structure of ZiTiO4. J. Am. Ceram. Soc. 50, 216 (1967)CrossRefGoogle Scholar
27.Grimes, N.W.: The spinels: Versatile materials. Phys. Technol. 6, 22 (1975)CrossRefGoogle Scholar