Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-04T09:26:47.399Z Has data issue: false hasContentIssue false

Gd-doping effects on properties of amorphous silicon films prepared by electron beam evaporations

Published online by Cambridge University Press:  31 January 2011

Runjin Gan
Affiliation:
Department of Basic Science Courses, BIM, Beijing 100085, People's Republic of China
Fengmin Liu
Affiliation:
Department of Basic Science Courses, BIM, Beijing 100085, People's Republic of China
Li Qi
Affiliation:
Department of Basic Science Courses, BIM, Beijing 100085, People's Republic of China
Jizheng Wang
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Get access

Extract

Gd-doped amorphous silicon films have been prepared by the electron beam evaporation technique, employing the experimental methods of dc conductivity temperature properties, ESR (electron spin resonance) spectra, and optical band gap Eopt measurements. We have investigated the optical and electrical properties of the films. The results show that at 290 K < T < 330 K, hopping conduction in Gd impurity states near Fermi level is predominant, and at 330 K < T < 500 K extended state conduction dominates due to electrons exited from the impurity states. At a Gd concentration of about 1.0 at.% spin density Ns, peak-peak width ΔBpp and line-shape factor l of ESR spectra change their dependence on Gd contents. The optical gap of the films narrows with increasing Gd contents in the films from 1.68 eV to 0.42 eV. The results were explained on the basis of the partial compensation of Gd atoms for dangling bonds .

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kaveh, M. and Mott, N. F., Philos. Mag. B 55, 9 (1987).CrossRefGoogle Scholar
2.Davis, E. A., Bayliss, S. C., Asal, R., and Manssor, M., J. Non-Cryst. Solids 114, 465 (1989).CrossRefGoogle Scholar
3.Oestereich, T., Swiatkowski, C., and Broser, I., Appl. Phys. Lett. 56 (5), 29 (1990) 446.CrossRefGoogle Scholar
4.Morigaki, K., Philos. Mag. B 42, 979 (1980).CrossRefGoogle Scholar
5.Rogachev, N. A., Smid, V., Mares, J. J., and Kristofic, J., J. Non-Cryst. Solids 98, 95 (1987).Google Scholar
6.Dvurechenskii, A. V., Dravin, V. A., Ryazantsev, I. A., Antonenko, A. KH., and Landochkin, I. G., Phys. Status Solidi (a) 95, 635 (1986).CrossRefGoogle Scholar
7.Akimchenko, I. P., Alimardonov, E., Karryev, A. N., Krasnopevtsev, V. V., and Vtkin, D. P., Sov. Phys. Semicond. 19, 887 (1985).Google Scholar
8.Adam, J. L. and Sibley, W. A., J. Non-Cryst. Solids 76, 267 (1985).CrossRefGoogle Scholar
9.Haydl, W. H., Miller, H. D., Ennen, H., Korber, W., and Benz, K. W., Appl. Phys. Lett. 46, 870 (1985).CrossRefGoogle Scholar
10.Ennen, H. and Schneider, J., J. Electron. Mater. 14A, 115 (1985).Google Scholar
11.Nakano, R., Matamoto, H., Endo, T., Shimada, J., Sakagami, N., and Miura, N., Jpn. J. Appl. Phys. 27, L2130 (1988).CrossRefGoogle Scholar
12.Mott, N. F., Metal-Insulator Transition (Taylor Francis London, 1974).Google Scholar
13.Wu, Y. and Stesmans, A., Phys. Rev. B 38, 2779 (1988).CrossRefGoogle Scholar
14.Barnes, S. E., Adv. Phys. 30, 801 (1981).CrossRefGoogle Scholar
15.Biegelsen, D. K. and Stutzmann, M., Phys. Rev. B 33, 3006 (1986).CrossRefGoogle Scholar