Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T22:21:19.483Z Has data issue: false hasContentIssue false

Fractal geometry of collision cascades

Published online by Cambridge University Press:  31 January 2011

François Rossi
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Don M. Parkin
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Michael Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The fractal nature of self-ion collision cascades is first described using an inverse power potential and then by the more realistic potential of Biersack–Ziegler. Based on the model of Cheng et al. and TRIM Monte Carlo simulations, the average cascade fractal dimension is a function of both atomic mass and initial energy. The instantaneous fractal dimension increases as the cascade evolves. A critical energy Ec for producing a dense subcascade is derived and it is shown that Ec agrees well with the onset energy for constant damage efficiency.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mandelbrot, B., The Fractal Geometry of Nature (W. H. Freeman, New York, 1983).Google Scholar
2Cheng, Y.T., Nicolet, M.A., and Johnson, W.L., Phys. Rev. Lett. 58, 2083 (1987).CrossRefGoogle Scholar
3Winterbon, K.B., Physica Scripta 36, 689 (1987).CrossRefGoogle Scholar
4Biersack, J. P. and Ziegler, J. F., Nucl. Instr. and Meth. 194, 93 (1982).Google Scholar
5Thompson, D.A., Radiat. Eff. 56, 105 (1981).CrossRefGoogle Scholar
6Thompson, M. W., Defects and Radiation Damage in Metals (Cambridge, 1969).Google Scholar
7Kinchin, G.H. and Pease, R. S., Rep. Prog. Phys. 18, 1 (1955).Google Scholar
8Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, Vol. I of The Stopping and Range of Ions in Matter, edited by Ziegler, J. F. (Pergamon, New York, 1985).Google Scholar
9Robinson, M.T. and Torrens, I.M., Phys. Rev. B9, 5008 (1974).Google Scholar
10Walker, R. S. and Thompson, D. A., Radiat. Eff. 36, 91 (1978).CrossRefGoogle Scholar
11Heinisch, H.L., J. Nucl. Mater. 103 & 104, 1325 (1981).Google Scholar
12Norgett, M. J., Torrens, I. M., and Robinson, T. M., Nucl. Eng. Design 33, 50 (1975).Google Scholar
13Merkle, K.L., Averback, R. S., and Benedek, R., Phys. Rev. Lett. 38, 424 (1977).Google Scholar
14Howe, L. M. and Rainville, M. H., Nucl. Instr. and Meth. 182-183, 143 (1981).Google Scholar
15Heinisch, H.L., J. of Nucl. Mater. 117, 46 (1983).Google Scholar
16Chou, P. and Ghoniem, N.M., 3. of Nucl. Mater. 137, 63 (1985).CrossRefGoogle Scholar
17Guinan, M. W. and Kinney, J.H., J. of Nucl. Mater. 103 & 104, 1319 (1981).CrossRefGoogle Scholar