Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-07T22:51:48.239Z Has data issue: false hasContentIssue false

Formation of Zr70Ni23Ti7 Glassy Alloy and Phase Transformation upon Annealing

Published online by Cambridge University Press:  31 January 2011

Limin Wang*
Affiliation:
Inoue Superliquid Glass Project, ERATO, JST, Sendai 982–0807, Japan
Chunfei Li
Affiliation:
Inoue Superliquid Glass Project, ERATO, JST, Sendai 982–0807, Japan
Liqun Ma
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
*
a)Address all correspondence to this author. e-mail: wang@sendai.jst.go.jp
Get access

Abstract

Zr70Ni23Ti7 alloy contains a single amorphous phase when it is melt-spun at a wheel surface velocity over 20 m/s. The crystallization of these amorphous ribbons takes place through two exothermic reactions and shows a significant supercooled liquid region of about 30 K, indicating that the Zr70Ni23Ti7 alloy has a good glass-forming ability. The crystallization products of the first exothermic reaction for the ribbon prepared at a wheel surface velocity of 40 m/s are mainly an icosahedral quasicrystalline phase (I-phase) and some Zr2Ni phases. Further heating to a higher temperature will lead to the transformation of the metastable I-phase to Zr2Ni. Some icosahedral atomic clusters with a structure similar to those in face-centered-cubic Zr2Ni may exist in the alloy after rapid quenching, and most of them may act as nuclei of I-phase. The formation of I-phase in this alloy without any noble metals may be due to the proper atomic ratios in the system.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Köster, U., Meinhardt, J., Roos, S., and Libertz, H., Appl. Phys. Lett. 69, 179 (1996).CrossRefGoogle Scholar
Chen, M.W., Zhang, T., Inoue, A., Sakai, A., and Sakurai, A., Appl. Phys. Lett. 75, 1697 (1999).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Saida, J., Matsusita, M., Chen, M.W., and Sakurai, T., Mater. Trans. JIM 40, 1137 (1999).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Saida, J., Matsusita, M., Chen, M.W., and Sakurai, T., Mater. Trans. JIM 40, 1181 (1999).CrossRefGoogle Scholar
Matsushita, M., Saida, J., Li, C., and Inoue, A., J. Mater. Res. 15, 1280 (2000).CrossRefGoogle Scholar
Saida, J., Matsushita, M., Li, C., and Inoue, A., Appl. Phys. Lett. 76, 3558 (2000).CrossRefGoogle Scholar
Zhang, T., Inoue, A., Matsushita, M., and Saida, J., J. Mater. Res. 16, 20 (2001).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T., Mater. Trans. JIM 34, 1234 (1993).CrossRefGoogle Scholar
Altounian, Z., Batalla, E., J.O. Strom-Olsen, and Walter, J.L., J. Appl. Phys. 61, 149 (1987).CrossRefGoogle Scholar
Yang, Q.B., Philos. Mag. Lett. 57, 171 (1988).CrossRefGoogle Scholar
Saida, J., Matsushita, M., Li, C., and Inoue, A., Philos. Mag. Lett. 80, 737 (2000).CrossRefGoogle Scholar
Matsushita, M., Saida, J., and Inoue, A., Philos. Mag. Lett. 80, 79 (2000).CrossRefGoogle Scholar
Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M., Mater. Trans. JIM 39, 623 (1998).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., and Matsushita, M., J. Mater. Res. 15, 2195 (2000).CrossRefGoogle Scholar
Matsushita, M., Saida, J., Li, C., and Inoue, A., J. Mater. Res. 15, 1280 (2000).CrossRefGoogle Scholar
Saida, J., Matsushita, M., Li, C., and Inoue, A., Appl. Phys. Lett. 76, 3558 (2000).CrossRefGoogle Scholar