Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-21T14:44:09.296Z Has data issue: false hasContentIssue false

Electrically Controlled Flame Synthesis of Nanophase TiO2, SiO2, and SnO2 Powders

Published online by Cambridge University Press:  31 January 2011

Srinivas Vemury
Affiliation:
Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0171
Sotiris E. Pratsinis*
Affiliation:
Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0171
Lowinn Kibbey
Affiliation:
Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0171
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

Nanophase particles with precisely controlled characteristics are made by oxidation of their halide vapors in electrically assisted hydrocarbon flames using needle-shaped or plate electrodes. The particle size and crystallinity decrease with increasing field strength across the flame. The field generated by the electrodes across the flame decreases the particle residence time in the high temperature region of the flame. Furthermore, it charges the newly formed particles, resulting in electrostatic repulsion and dispersion that decreases particle growth by coagulation. Electric fields reduced the primary particle size of TiO2, the agglomerate size of SnO2, and both the agglomerate and primary size of SiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A., Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riely, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
2.Ichinose, N., Ozaki, Y., and Kashu, S., Superfine Particle Technology (Springer-Verlag, London, 1992).CrossRefGoogle Scholar
3.Ulrich, G. D., C&EN, 62(8), 22 (1984).Google Scholar
4.Hardesty, D. R. and Weinberg, F. J., Fourteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1973), p. 1365.Google Scholar
5.Katz, J. K. and Hung, C-H., Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1990), p. 1733.Google Scholar
6.Xiong, Y., Pratsinis, S. E., and Mastrangelo, S. V. R., J. Colloid Interface Sci. 153, 106 (1992).CrossRefGoogle Scholar
7.Vemury, S. and Pratsinis, S. E., Appl. Phys. Lett. 66, 3275 (1995).CrossRefGoogle Scholar
8.Pratsnis, S. E., Zhu, W., and Vemury, S., Powder Technol. 86, 87 (1996).CrossRefGoogle Scholar
9.Mezey, E. J., in Vapor Deposition, edited by Powell, C. F., Oxley, J. H., and Blocher, J. M., Jr. (John Wiley & Sons, New York, 1966), p. 423.Google Scholar
10.Ollis, D. F., Pelizzetti, E., and Serpone, N., Environ. Sci. Technol. 25, 1523 (1991).CrossRefGoogle Scholar
11.Bankmann, M. R., Brand, R., Engler, B. H., and Ohmer, J., Catal. Today 14, 225 (1992).CrossRefGoogle Scholar
12.Bautista, J. R. and Atkins, R. M., J. Aerosol Sci. 22, 667 (1991).CrossRefGoogle Scholar
13.Kim, E. U-K. and Yasui, I., J. Mater. Sci. 23, 637 (1988).CrossRefGoogle Scholar
14.Vijayakumar, R. and Whitby, K. T., Aerosol Sci. Technol. 3, 17 (1984).CrossRefGoogle Scholar
15.Vemury, S. and Pratsinis, S. E., J. Am. Ceram. Soc. 78, 29842992 (1995).CrossRefGoogle Scholar
16.Kobata, A., Kusakabe, K., and Morooka, S., AlChE J. 37, 347359 (1991).CrossRefGoogle Scholar
17.Vemury, S., Flame Synthesis of Nanoparticles: Effect of Charging, Ph.D.Thesis, University of Cincinnati (1996).Google Scholar
18.Matsoukas, T. and Friedlander, S. K., J. Colloid Interface Sci. 146, 495 (1991).CrossRefGoogle Scholar
19.Harrison, P. G. and Willett, M. J., J. Chem. Soc., Faraday Trans. 1, 85 19211932 (1989).Google Scholar
20.Astier, M. and Vergnon, P., J. Solid State Chem. 19, 67 (1976).CrossRefGoogle Scholar
21.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley-Interscience, New York, 1976).Google Scholar
22.Shannon, R. D. and Pask, J. A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
23.Payne, K. G. and Weinberg, F. J., Proc. R. Soc. A250, 316 (1959).Google Scholar
24.Bradley, D. and Jamel, M. A. M., Comb. Flame 58, 115 (1984).CrossRefGoogle Scholar
25.Bradley, D., in Advanced Combustion Processes, edited by Weinberg, F. J. (Academic Press, Orlando, FL, 1986), p. 331.Google Scholar
26.Sher, E., Pinhasi, G., Pokryvailo, A., and Bar-on, R., Combustion Flame 94, 244 (1993).CrossRefGoogle Scholar
27.Fotou, G. P., Pratsinis, S. E., and Baron, P. A., Chem. Eng. Sci. 49, 1651 (1994).CrossRefGoogle Scholar
28.Kasper, G., J. Colloid Interface Sci. 81, 32 (1981).CrossRefGoogle Scholar
29.Adachi, M., Kousaka, Y., and Okuyama, K., J. Aerosol Sci. 16, 109 (1985).CrossRefGoogle Scholar
30.Wiedensohler, A., J. Aerosol Sci. 19, 387 (1988).CrossRefGoogle Scholar
31.Akhtar, M. K., Xiong, Y., and Pratsinis, S. E., AlChE J. 37, 15611570 (1991).CrossRefGoogle Scholar
32.Vemury, S. and Pratsinis, S. E., J. Aerosol Sci. 27, 951 (1996).CrossRefGoogle Scholar
33.Koch, W. and Friedlander, S. K., J. Colloid Interface Sci. 140, 419 (1990).CrossRefGoogle Scholar