Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T21:29:46.041Z Has data issue: false hasContentIssue false

Electrical properties of natural and synthetic pyrite (FeS2) crystals

Published online by Cambridge University Press:  31 January 2011

R. Schieck
Affiliation:
Hahn-Meitner-Institut Berlin, Bereich Photochemische Energieumwandlung, Abteilungen Solare Energetik und Materialforschung, Glienicker Straße 100, D-1000 Berlin 39, Federal Republic of Germany
A. Hartmann
Affiliation:
Hahn-Meitner-Institut Berlin, Bereich Photochemische Energieumwandlung, Abteilungen Solare Energetik und Materialforschung, Glienicker Straße 100, D-1000 Berlin 39, Federal Republic of Germany
S. Fiechter*
Affiliation:
Hahn-Meitner-Institut Berlin, Bereich Photochemische Energieumwandlung, Abteilungen Solare Energetik und Materialforschung, Glienicker Straße 100, D-1000 Berlin 39, Federal Republic of Germany
R. Könenkamp
Affiliation:
Hahn-Meitner-Institut Berlin, Bereich Photochemische Energieumwandlung, Abteilungen Solare Energetik und Materialforschung, Glienicker Straße 100, D-1000 Berlin 39, Federal Republic of Germany
H. Wetzel
Affiliation:
Hahn-Meitner-Institut Berlin, Bereich Photochemische Energieumwandlung, Abteilungen Solare Energetik und Materialforschung, Glienicker Straße 100, D-1000 Berlin 39, Federal Republic of Germany
*
a)Address correspondence to this author.
Get access

Abstract

We have prepared a series of synthetic n-type pyrite (FeS2) crystals by chemical vapor transport and high temperature solution growth. These and natural crystals were characterized with respect to Hall mobility, carrier concentration, and conductivity, and chemically analyzed by mass spectroscopy and atomic emission spectroscopy. The results are compared in detail to previous work on natural crystals. Conductivity and carrier concentration in our measurements varied between 0.05 and 3.5 (Ω cm)−1 and between 6.9·1015 and 5.4·1017 cm−3, respectively. The peak mobilities have values ranging from 100 to 2000 cm2/Vs. We find that sulfur deficiency and a number of impurity elements, such as Si, Cu, and Al, can qualitatively account for the trends in the electronic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brostigen, G. and Kjekshus, A., Acta Chem. Scand. 24, 2993 (1970).Google Scholar
2Wyckoff, R. W. G., Crystal Structures (Interscience Publishers, John Wiley & Sons, New York, 1963), Vol. 1, p. 348.Google Scholar
3Ennaoui, A., Fiechter, S., Jaegermann, W., and Tributsch, H., J. Electrochem. Soc. 133, 98 (1986).CrossRefGoogle Scholar
4Ennaoui, A., Fiechter, S., Goslowsky, H., and Tributsch, H., J. Electrochem. Soc. 132, 1579 (1985).CrossRefGoogle Scholar
5Chatzitheodorou, G., Fiechter, S., Könenkamp, R., Kunst, M., Jaegermann, W., and Tributsch, H., Mater. Res. Bull. 21, 1481 (1986).Google Scholar
6Smestad, G., da, A. Silva, Tributsch, H., Fiechter, S., Kunst, M., Meziani, N., and Birkholz, M., Solar Energy Mater. 18, 299 (1989).Google Scholar
7Fiechter, S., Mai, J., Ennaoui, A., and Szacki, W., J. Cryst. Growth 78, 438 (1986).CrossRefGoogle Scholar
8Fleming, J. G., J. Cryst. Growth 92, 287 (1988).CrossRefGoogle Scholar
9Fiechter, S. and Kühne, H-M., J. Cryst. Growth 83, 517 (1987).Google Scholar
10Luck, J., Hartmann, A., and Fiechter, S., Fresenius Z. Anal. Chem. 334, 441 (1989).CrossRefGoogle Scholar
11Van der Pauw, L. J., Philips Techn. Rundschau, Jg. 20, 59 (1958).Google Scholar
12Echarri, A. L. and Sánchez, C., Solid State Commun. 15, 827 (1974).CrossRefGoogle Scholar
13Smith, F. G., Am. Mineral. 27, 1 (1942).Google Scholar
14Marinace, J. C., Phys. Rev. 96, 593 (1954).Google Scholar
15Ovchinnikov, I. K. and Krivoshein, A. A., Physics of the Solid Earth 11, 86 (1972).Google Scholar
16Horita, H., Jpn. J. Appl. Phys. 10, 1478 (1971); 12, 617 (1973).Google Scholar
17Fukui, T., Miyadai, T., and Miyahara, S., J. Phys. Soc. Jpn. 31, 1277 (1971).CrossRefGoogle Scholar
18Bither, T. A., Bouchard, R. J., Cloud, W. H., Donohue, P. C., and Siemons, W. J., Inorg. Chem. 7, 2208 (1968).CrossRefGoogle Scholar
19Siebert, D., Dahlem, J., Fiechter, S., and Hartmann, A., Z. Naturforsch. 44a, 59 (1989).CrossRefGoogle Scholar
20Siebert, D. (private communication).Google Scholar
21Özgür, N., Thesis, Freie Universität Berlin (1985).Google Scholar
22Burns, R. G., Mineralogical Applications of Crystal Field Theory (Cambridge University Press, Cambridge, 1970).Google Scholar