Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T13:34:06.720Z Has data issue: false hasContentIssue false

Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films

Published online by Cambridge University Press:  02 January 2013

Xinning Ho
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Haijing Lu
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Wenjun Liu
Affiliation:
School of Electrical and Electronic Engineering (EEE), Nanyang Technological University, Singapore 639798
Ju Nie Tey
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Chek Kweng Cheng
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Eugene Kok
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Jun Wei*
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
*
a)Address all correspondence to this author. e-mail: jwei@SIMTech.a-star.edu.sg
Get access

Abstract

There have been efforts to develop alternative transparent conductors to replace indium tin oxide (ITO). A hybrid transparent conductor that integrates a metallic Cu grid and graphene film promises to be a suitable candidate. Flexibility, sheet resistance, and transmittance comparable to ITO have been demonstrated. Here, we show that the optical and electrical properties of the hybrid transparent conductor can be easily tuned by clever design of the metal grid. The outcome of our study provides unprecedented guidelines for future design of metal grids integrated in transparent conductors. We also find that the graphene film forms an effective barrier to retard the degradation of the copper grid when the hybrid transparent conductor is heated in air up to high temperatures for an extended period of time. Hence, a superior hybrid transparent conductor, which can be carefully engineered to display desirable properties, has been demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mizuhashi, M.: Electrical properties of vacuum-deposited indium oxide and indium tin oxide films. Thin Solid Films 70, 91 (1980).CrossRefGoogle Scholar
Kim, H., Gilmore, C.M., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., and Chrisy, D.B.: Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451 (1999).CrossRefGoogle Scholar
Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., and Newton, R.R.: Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 1425 (2000).CrossRefGoogle Scholar
Minami, T.: Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films 516, 1314 (2008).CrossRefGoogle Scholar
Bhosle, V., Prater, J.T., Yang, F., Burk, D., Forrest, S.R., and Narayan, J.: Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. J. Appl. Phys. 102, 023501 (2007).CrossRefGoogle Scholar
Yang, F. and Forrest, S.R.: Organic solar cells using transparent SnO2-F anodes. Adv. Mater. 18, 2018 (2006).CrossRefGoogle Scholar
Hu, L., Hecht, D.S., and Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
Kaempgen, M., Duesberg, G.S., and Roth, S.: Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425 (2005).CrossRefGoogle Scholar
Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., and Rinzler, A.G.: Transparent, conductive carbon nanotube films. Science 305, 1273 (2004).CrossRefGoogle ScholarPubMed
Nirmalraj, P.N., Lyons, P.E., De, S., Coleman, J.N., and Boland, J.J.: Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 9, 3890 (2009).CrossRefGoogle ScholarPubMed
Li, Z.R., Kandel, H.R., Dervishi, E., Saini, V., Biris, A.S., Biris, A.R., and Lupu, D.: Does the wall number of carbon nanotubes matter as conductive transparent material? Appl. Phys. Lett. 91, 53115 (2007).CrossRefGoogle Scholar
Hecht, D.S., Heintz, A.M., Lee, R.S., Hu, L., Moore, B., Cucksey, C., and Risser, S.: High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22, 075201 (2011).CrossRefGoogle ScholarPubMed
Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009).CrossRefGoogle ScholarPubMed
Lee, W.H., Park, J., Sim, S.H., Jo, S.B., Kim, K.S., Hong, B.H., and Cho, K.: Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv. Mater. 23, 1752 (2011).CrossRefGoogle ScholarPubMed
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).CrossRefGoogle ScholarPubMed
Kim, R-H., Bae, M-H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D-H., Li, M., Wu, J., Du, F., Kim, H-S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., and Rogers, J.A.: Stretchable transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).CrossRefGoogle ScholarPubMed
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishmam, J., Lei, T., Kim, H.R., Song, Y., Kim, Y-J., Kim, K.S., Ozyilmaz, B., Ahn, J-H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle ScholarPubMed
Hu, L., Kim, H.S., Lee, J-Y., Peumans, P., and Cui, Y.: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955 (2010).CrossRefGoogle ScholarPubMed
De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Mirmalraj, P.N., Blau, W.J., Boland, J.J., and Coleman, J.N.: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3, 1767 (2009).CrossRefGoogle ScholarPubMed
Lee, J-Y., Connor, S.T., Cui, Y., and Peumans, P.: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).CrossRefGoogle ScholarPubMed
Wu, H., Hu, L., Rowell, M.W., Kong, D., Cha, J.J., McDonough, J.R., Zhu, J., Yang, Y., McGehee, M.D., and Cui, Y.: Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10, 4242 (2010).CrossRefGoogle ScholarPubMed
Eda, G., Fanchni, G., and Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270 (2008).CrossRefGoogle ScholarPubMed
Tung, V.C., Allen, M.J., Yang, Y., and Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25 (2009).CrossRefGoogle ScholarPubMed
Zhu, Y., Sun, Z., Yan, Z., Jin, Z., and Tour, J.M.: Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5, 6472 (2011).CrossRefGoogle ScholarPubMed
Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458 (2008).CrossRefGoogle ScholarPubMed
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J., and Ruoff, R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321 (2011).CrossRefGoogle Scholar
Kang, M-G. and Guo, L.J.: Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391 (2007).CrossRefGoogle Scholar
Zhang, W., Brongersma, S.H., Richard, O., Brijs, B., Palmans, R., Froyen, L., and Maex, K.: Influence of the electron mean free path on the resistivity of thin metal films. Microelectron. Eng. 76, 146 (2004).CrossRefGoogle Scholar
Unarunotai, S., Koepke, J.C., Tsai, C-L., Du, F., Chialvo, C.E., Murata, Y., Haasch, R., Petrov, I., Mason, N., Shim, M., Lyding, J., and Rogers, J.A.: Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano 4, 5591 (2010).CrossRefGoogle ScholarPubMed
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle ScholarPubMed