Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T09:52:09.918Z Has data issue: false hasContentIssue false

Elastic stress in composite FeTi hydrogen storage materials

Published online by Cambridge University Press:  31 January 2011

P. Tessier
Affiliation:
Centre for the Physics of Materials, Department of Physics, McGill University, 3600 University Street, Montréal, Québec, H3A 2T8, Canada
R. Schulz
Affiliation:
Technologie des matériaux, IREQ–Institut de recherche d'Hydro-Québec, 1800 boul. Lionel-Boulet, Varennes, Québec, J3X 1S1, Canada
J. O. Ström-Olsen
Affiliation:
Centre for the Physics of Materials, Department of Physics, McGill University, 3600 University Street, Montréal, Québec, H3A 2T8, Canada
Get access

Abstract

A simple model of the elastic stress in a composite hydrogen absorbing material is developed to account for the hydrogen storage properties of nanocrystalline FeTi with a network of intergranular phase having a wide storage site energy distribution. The model accounts for the equilibrium properties of nanocrystalline FeTi hydrogen absorbers made by ball-milling such as the narrowing of the miscibility gap and changes in plateau pressure. A second model is proposed for disconnected inclusions of the second phase. The effect of chemical disorder is also briefly examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zaluski, L., Tessier, P., Ryan, D. H., Doner, C. B., Zaluska, A., Ström-Olsen, J. O., Trudeau, M. L., and Schulz, R., J. Mater. Res. 8, 30593068 (1993).CrossRefGoogle Scholar
2.Zaluski, L., Zaluska, A., and Ström-Olsen, J. O., J. Alloys Compounds 217, 245249 (1995).CrossRefGoogle Scholar
3.Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J. O., and Schulz, R., J. Alloys Compounds 217, 295300 (1995).CrossRefGoogle Scholar
4.Mütschele, T. and Kirchheim, R., Scripta Metall. 21, 135140 (1987).CrossRefGoogle Scholar
5.Mütschele, T. and Kirchheim, R., Scripta Metall. 21, 11011104 (1987).CrossRefGoogle Scholar
6.Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. Mater. 24, 201206 (1990).CrossRefGoogle Scholar
7.Fitzsimmons, M. R., Eastman, J. A., Müller-Stach, M., and Wallner, G., Phys. Rev. B 1991 (6), 24522460 (1991).CrossRefGoogle Scholar
8.Eastman, J. A., Fitzsimmons, M. R., Müller-Stach, M., Wallner, G., and Elam, W. T., J. Nanostructured Mater. 1, 4752 (1992).CrossRefGoogle Scholar
9.Eastman, J. A., Thompson, L. J., and Kestel, B. J., Phys. Rev. B 48 (1), 8492 (July 1993).CrossRefGoogle Scholar
10.Stuhr, U., Wipf, H., Udovic, T. J., Weismüller, J., and Gleiter, H., J. Phys.: Condensed Matter 7, 219230 (1995).Google Scholar
11.Tessier, P., Ph.D. Thesis, McGill University, Montreal (1996).Google Scholar
12.Tessier, P., Zaluski, L., Yan, Z-H., Trudeau, M. L., Bormann, R., Schulz, R., and Ström-Olsen, J. O., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), pp. 209213.Google Scholar
13.Reilly, J. J. and Wiswall, R. H. Jr, Inorg. Chem. 13 (1), 218222 (1974).CrossRefGoogle Scholar
14.Tessier, P., Zaluski, L., Zaluska, A., Ström-Olsen, J. O., and Schulz, R., 1995 International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, ISMANAM-95, Quebec City (1995).Google Scholar
15.Fukai, Y., The Metal-Hydrogen System (Springer-Verlag, Heidelberg, Germany, 1993).CrossRefGoogle Scholar
16.Wagner, H. and Horner, H., Adv. Phys. 23, 587637 (1974).CrossRefGoogle Scholar
17.Buchenau, U., Schober, H. R., Welter, J-M., Arnold, G., and Wagner, R., Phys. Rev. B 27 (2), 955962 (1983).CrossRefGoogle Scholar
18.Knuyt, G., De Schepper, L., and Stals, L. M., in Proceedings of the Sixth International Conference on Rapidly Quenched Metals, Montréal, August 3–7, 1987, Vol. 98 of Materials Science and Engineering (1988), pp. 527529.Google Scholar
19.Schreiber, E., Anderson, O. L., and Soga, N., Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973).Google Scholar
20.Landau, L. and Lifshitz, E., Théorie de l'élasticité, Physique théorique (Editions Mir, Moscow, 1990).Google Scholar
21.Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J. O., and Schulz, R., J. Alloys Compounds 227, 5357 (1995).CrossRefGoogle Scholar
22.Griessen, R., Phys. Rev. B 27, 75757582 (June 1983).CrossRefGoogle Scholar
23.Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J. O., and Schulz, R., 1995 International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, ISMANAM-95, Quebec City (1995).Google Scholar