Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T05:15:01.987Z Has data issue: false hasContentIssue false

Effects of Si content on the microstructure and tensile strength of an in situAl/Mg2Si composite

Published online by Cambridge University Press:  26 July 2012

Jian Zhang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Yu-qing Wang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Bing Yang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Ben-lian Zhou
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, and International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015, China
Get access

Extract

Al/Mg2Si composites were in situ fabricated by the usual die-casting technique, and effects of the Si contents in the composites on microstructures and tensile strengths were investigated. Experimental results show that extra Si contents in Al/Mg2Si composites induce a ductile matrix and a uniform distribution of in situ particles. The refined microstructures lead to an obvious increase in both strength and ductility of the metal matrix composites (MMCs). The effects of extra Si on both the solidification process and fracture characteristics of the Al/Mg2Si composites were analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koczak, M.J. and Premkumar, M.K., JOM 1, 44 (1993).CrossRefGoogle Scholar
2.Schmid, E.E., von Oldenburg, K., and Frommeyer, G., Z. Metallkde. 81 (11), 809 (1990).Google Scholar
3.Voggenreiter, H.F. and Homann, R., Adv. Mater. Technol. Monitor 2 (3), 10 (1995).Google Scholar
4.Mabuchi, M. and Higashi, K., Acta Mater. 44 (11), 4611 (1996).CrossRefGoogle Scholar
5.Mabuchi, M., Kubota, K., and Higashi, K., Mater. Letts. 19, 247 (1994).CrossRefGoogle Scholar
6.Mabuchi, M., Kubota, K., and Higashi, K., J. Mater. Sci. 31, 1529 (1996).CrossRefGoogle Scholar
7.Mabuchi, M., Kubota, K., and Higashi, K., Scripta Metall. Mater. 33 (2), 331 (1995).Google Scholar
8.Raghunathan, N. and Sheppared, T., Mater. Sci. Technol. 6 (7), 629 (1990).CrossRefGoogle Scholar
9.Mondolfo, L.F., Aluminum Alloy: Structure and Properties (1976).CrossRefGoogle Scholar
10.Fei, W.D. and Kang, S.B., J. Mater. Sci. Lett. 14, 1795 (1995).Google Scholar
11.Valer. Goni, J., Rodriguez-Ibabe, J. M., and Urcola, J. J., Scripta Mater. 34 (3), 483 (1996).Google Scholar
12.Kim, Y-H., Led, S., Kim, N. J., et al., Scripta Mater. 31 (12), 1629 (1994).CrossRefGoogle Scholar
13.Ibrahim, I. A., Mohamed, F. A., and Lavernia, E. J., J. Mater. Sci. 26, 1137 (1991).CrossRefGoogle Scholar
14.Hafiz, M.F. and Kobayashi, T., Scripta Mater. 33, 475 (1994).CrossRefGoogle Scholar
15.Manoharan, M., Lewandowski, J.J., and Hunt, W. H., Mater. Sci. Eng. A 172, 63 (1993).CrossRefGoogle Scholar
16.Davidson, D.L., Metall. Trans. A 22A (1), 113 (1991).CrossRefGoogle Scholar
17.Mcdanels, D.L., Metall. Trans. A 16A (6), 1105 (1985).Google Scholar
18.Corbin, S.F. and Wilkinson, D. S., Acta Metall. Mater. 42 (4), 1329 (1994).CrossRefGoogle Scholar
19.Hutchison, W.G. and Palmiere, E. J., Mater. Trans. JIM 37 (3), 330 (1996).CrossRefGoogle Scholar
20.Kiser, M.T., Zok, F. W., and Wilkinson, D. S., Acta Mater. 44 (9), 3465 (1996).CrossRefGoogle Scholar
21.Liang, D., Bayrakter, Y., and Jones, H., Acta Metall. Mater. 43 (2), 579 (1995).CrossRefGoogle Scholar
22.Valer. Goni, J., Rodriguez-Ibabe, J.M., and Urcola, J. J., Key Eng. Mater. 127–131, 911 (1997).Google Scholar