Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T02:33:53.086Z Has data issue: false hasContentIssue false

Effects of PbO excess in Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics: Part II. Microstructure development

Published online by Cambridge University Press:  31 January 2011

M. Villegas
Affiliation:
Electroceramics Department, Instituto de Ceráamica y Vidrio, CSIC, 28500 Arganda del Rey, Madrid, Spain
J. F. Fernáandez
Affiliation:
Electroceramics Department, Instituto de Ceráamica y Vidrio, CSIC, 28500 Arganda del Rey, Madrid, Spain
A. C. Caballero
Affiliation:
Electroceramics Department, Instituto de Ceráamica y Vidrio, CSIC, 28500 Arganda del Rey, Madrid, Spain
Z. Samardija
Affiliation:
Ceramics Department, Jozef Stefan Institute, Slovenia
G. Drazic
Affiliation:
Ceramics Department, Jozef Stefan Institute, Slovenia
M. Kosec
Affiliation:
Ceramics Department, Jozef Stefan Institute, Slovenia
Get access

Abstract

The microstructure evolution of Pb(Mg1/3Nb2/3)O3 –PbTiO3 (PMN-PT) based ceramics has been investigated to determine the influence of the presence of PbO content in excess of stoichiometric values. The microstructure of the different materials showed a different evolution of secondary phases (free PbO and pyrochlore type) related to the PbO excess. The pyrochlore phase appeared in a layer near the top surface of the specimens. The thickness of the layer and the grain size of this secondary phase increased with the amount of PbO excess. A transmission electron microscopy (TEM) study of the sintered specimens revealed a core-shell structure in more than 30% of grains. The shell of these grains was Ti-rich PMN, and it is related to the presence of a liquid-phase-assisted sintering mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Swartz, S.L., Shrout, T.R., Schulze, W.A., and Cross, L. E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
2.Uchino, K., Am. Ceram. Soc. Bull. 65, 647 (1986).Google Scholar
3.Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
4.Villegas, M., Fernández, J. F., Moure, C., and Durán, P., J. Mater. Sci. 29, 4999 (1994).CrossRefGoogle Scholar
5.Chen, J. and Harmer, M. P., J. Am. Ceram. Soc. 73, 68 (1990).CrossRefGoogle Scholar
6.Wang, H.C. and Schulze, W.A., J. Am. Ceram. Soc. 73, 825 (1990).CrossRefGoogle Scholar
7.Gupta, S.M. and Kulkarni, A. R., J. Mater. Res. 10, 953 (1995).CrossRefGoogle Scholar
8.Vilarinho, P. M. and Baptista, J. L., J. Europ. Ceram. Soc. 11, 407 (1993).CrossRefGoogle Scholar
9.Kanai, H., Yamashita, Y., Kakihana, M., and Yoshimura, M., J. Europ. Ceram. Soc. 16, 1157 (1996).CrossRefGoogle Scholar
10.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
11.Villegas, M., Caballero, A. C., Kosec, M., Moure, C., Durán, P., and Fernandez, J. F., J. Mater. Res. 14, 891897 (1999).Google Scholar
12.Ye, Z.G., Tissot, P., and Schmid, H., Mater. Res. Bull. 25, 739 (1990).Google Scholar
13.Swartz, S.L., Shrout, T.R., Schulze, W.A., and Cross, L. E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
14.Payne, D.A. and Cross, L.E., in Microstructure and Properties of Ceramic Materials, Proc. 1st China–USA Seminar, edited by Yen, T. S. and Pask, J. A. (Science Press, Beijing, China, 1984), pp. 380390.Google Scholar
15.Villegas, M., Ph.D. Thesis, Universidad Autónoma de Madrid (1993).Google Scholar
16.Villegas, M., Jurado, J. R., Moure, C., and Durán, P., J. Mater. Sci. 30, 1391 (1995).CrossRefGoogle Scholar