Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T22:43:32.506Z Has data issue: false hasContentIssue false

The effect of TiO2 addition on the thermal behavior of sol-gel derived β-spodumene powders

Published online by Cambridge University Press:  26 July 2012

Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan, Republic of China
Get access

Extract

The effect of TiO2 addition on the crystallization and phase transformation process in Li2O · Al2O3 · 4SiO2 gels with various TiO2 contents was investigated using differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The activation energy increased from 98.2 to 184.6 kcal/mol as the TiO2 content rose from 2.0 to 8.0 wt. %. The crystallization sequence and phase transformation were similar in LAS gels with various wt.% of TiO2 additions, except in the case of a 2.0 wt.% TiO2 content. During calcination from 800 to 1200 °C, crystallization of the β-spodumene phase progressed with increasing temperature, and a minor crystalline phase, rutile, also appeared.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Knickerbocker, S., Tuzzolo, M.R., and Lawhorne, S., J. Am. Ceram. Soc. 72, 1873 (1989).CrossRefGoogle Scholar
2.Suzuki, H., Takahashi, J., and Saito, H., J. Chem. Soc. Jpn., No. 10, 1319 (1991).Google Scholar
3.Yang, J. S., Sakka, S., Yoko, T., and Kozuka, H., J. Mater. Sci. 26, 1827 (1991).CrossRefGoogle Scholar
4.Orcel, G. and Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L.L. and Ulich, D. R. (John Wiley and Sons, Inc., New York, 1986), pp. 224230.Google Scholar
5.Marotta, A., Buri, A., and Pernice, P., Phys. Chem. Glasses 21, 94 (1980).Google Scholar
6.Matusita, K. and Sakka, S., J. Non-Cryst. Solids, 38 & 9, 741 (1980).CrossRefGoogle Scholar
7.Marotta, A., Buri, A., and Valenti, G. L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar
8.Marotta, A., Buri, A., Branda, F., and Saiello, S., in Advance in Ceramics, Vol. 4, Nucleation and Crystallization in Glasses, edited by Simmons, J.H., Uhlman, D.R., and Beall, G.H. (American Ceramic Society, Westerville, OH, 1982), pp. 146162.Google Scholar
9.Wang, M.C., J. Ceram. Soc. Jpn. 102, 109 (1994).CrossRefGoogle Scholar
10.Wang, M.C., J. Mater. Res. 9, 2290 (1994).CrossRefGoogle Scholar
11.Li, C.T. and Peacor, D.R., Z. Kristallogr. 126, 46 (1968).CrossRefGoogle Scholar
12.Hsu, J. Y. and Speyer, R. F., J. Am. Ceram. Soc. 73, 3585 (1990).CrossRefGoogle Scholar
13.Beall, G.H. and Duke, D. A., in Glass Science and Technology, Vol. 1, edited by Uhlmann, D. R. and Kreidl, N. J. (Academic Press, New York, 1983), pp. 403445.Google Scholar
14.Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1967), p. 388.Google Scholar
15.Coble, R.L., J. Appl. Phys. 32, 793 (1961).CrossRefGoogle Scholar
16.Jarcho, M., Bolen, C.H., Thomas, M. B., Bobick, J., Kay, J. F., and Doremus, R.H., J. Mater. Sci. 11, 2027 (1976).CrossRefGoogle Scholar
17.Kingery, W. D., Bowen, H.K., and Uhlmann, D. R., Introduction to Ceramic (John Wiley and Sons, New York, 1976), pp. 354355.Google Scholar