Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T16:55:32.072Z Has data issue: false hasContentIssue false

The effect of grain size on microstructure and stress relaxation in polycrystalline Y1Ba2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

T. M. Shaw
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
S. L. Shinde
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
D. Dimos
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
R. F. Cook
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
P. R. Duncombe
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
C. Kroll
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

We have used transmission electron microscopy and optical microscopy to examine the effect that grain size and heat treatment have on twinning and microcracking in polycrystalline Y1Ba2Cu3O7−δ. It is shown that isothermal oxygenation heat treatments produce twin structures consisting of parallel twins, with a characteristic spacing that increases with increasing grain size. Slow cooling through the temperature range where the orthorhombic-to-tetragonal transformation induces twinning, however, produces a structure consisting of a hierarchical arrangement of intersecting twins, the scale of which appears to be independent of grain size. It is also shown that the microcracking induced by anisotropic changes in grain dimensions on cooling or during oxygenation can be suppressed if the grain size of the material is kept below about 1 μm. The results are examined in the light of current models for transformation twinning and microcracking and the models used to access the effect other processing variables such as oxygen content, doping or heat treatment may have on the microstructure of Y1Ba2Cu3O7−δ.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Milller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, W. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58 (9), 908 (1987).CrossRefGoogle Scholar
3Beyers, R., Lim, G., Engler, E.M., Savoy, R.J., Shaw, T. M., Dinger, T. R., Gallagher, W. J., and Sandstrom, R. L., Appl. Phys. Lett. 50, 1918 (1987).CrossRefGoogle Scholar
4Syono, Y., Kikuchi, M., Ohishi, K., Hiraga, K., Arai, H., Matsui, Y., Kobayashi, N., Sasaoka, T., and Muto, Y., Jpn. J. Appl. Phys. 26, L498 (1987).CrossRefGoogle Scholar
5Tendeloo, G. Van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63, 389 (1987).CrossRefGoogle Scholar
6Nakahara, S., Fisanick, G. J., Yan, M. F., Vandover, R. B., Boone, T., and Moore, R., J. Crystal Growth 85 (4), 639 (1987).CrossRefGoogle Scholar
7Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
8Chen, H., Werder, D.J., Liou, S.H., Kwo, J.R., and Hong, M., Phys. Rev. B 35 (16), 8767 (1987).CrossRefGoogle Scholar
9Hewat, A., Dupuy, M., Bourret, A., Capponi, J. J., and Marezio, M., Solid State Commun. 64 (4), 517 (1987).CrossRefGoogle Scholar
10Nakahara, S., Boone, T., Yan, M. F., Fisanick, G. J., and Johnson, D. W., J. Appl. Phys. 63 (2), 451 (1988).CrossRefGoogle Scholar
11Eaglesham, D.J., Humphreys, C.J., Alford, N. NcN., Clegg, W. J., Harmer, M. A., and Birchall, J.D., Appl. Phys. Lett. 51, 457 (1987).CrossRefGoogle Scholar
12Hervieu, M., Domenges, B., Michel, C., Heger, G., Provost, J., and Raveau, B., Phys. Rev. B 36 (7), 3920 (1987).CrossRefGoogle Scholar
13Kingon, A.I., Chevacharoenkul, S., Mansfield, J., Brynestad, J., and Haase, D.G., Adv. Ceram. Mater. 2 (3B), 678 (1987).CrossRefGoogle Scholar
14Sarikaya, M., Thiel, B.L., Aksay, L.A., Weber, W. J., and Frydrych, W. S., J. Mater. Res. 2 (6), 736 (1987).CrossRefGoogle Scholar
15Iijima, S., Ichihashi, T., Kubo, Y., and Tabuchi, J., Jpn. J. Appl. Phys. Part 2 26 (9), L1478 (1987).CrossRefGoogle Scholar
16Iijima, S., Ichihashi, T., Kubo, Y., and Tabuchi, J., Jpn. J. Appl. Phys. Part 2 26 (11), L1790 (1987).CrossRefGoogle Scholar
17Barry, J. C., J. of Electron Microscopy Technique 8 (3), 325 (1988).CrossRefGoogle Scholar
18Brokman, A., Solid State Commun. 64 (2), 257 (1987).Google Scholar
19Lukaszewicz, K., Stepiendamm, J., Horyn, R., Bukowski, Z., and Kowalski, M., J. of Appl. Cryst. 20, 505 (1987).CrossRefGoogle Scholar
20Hodeau, J. L., Chaillout, C., Capponi, J. J., and Marezio, M., Solid State Commun. 64 (11), 1349 (1987).CrossRefGoogle Scholar
21Fang, M. M., Kogan, V. G., Finnemore, D. K., Clem, J. R., Chumbley, L. S., and Farrell, D.E., Phys. Rev. B 37 (4), 2334 (1988).CrossRefGoogle Scholar
22Mueller, F. M., Chen, S.P., Prueitt, M.L., Smith, J. F., Smith, J. L., and Wohlleben, D., Phys. Rev. B 37 (10), 5837 (1988).CrossRefGoogle Scholar
23Sarikaya, M., Kikuchi, R., and Aksay, I. A., Physica C 152, 161 (1988).CrossRefGoogle Scholar
24Tendeloo, G. Van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63 (7), 603 (1987).CrossRefGoogle Scholar
25Robledo, A. and Varea, C., Phys. Rev. B 37 (1), 631 (1988).CrossRefGoogle Scholar
26Mueller, F. M., Chen, S. P., Prueitt, M. L., Smith, J. F., Smith, J. L., and Wohlleben, D., Phys. Rev. B 37 (10), 5837 (1988).CrossRefGoogle Scholar
27Horovitz, B., Barsch, G. R., and Krumhansl, J. A., Phys. Rev. B 36 (16), 8895 (1987).CrossRefGoogle Scholar
28Muller, K. A., Blazey, K.W., Bednorz, J. G., and Takashige, M., Physica B&C 148 (13), 149 (1987).Google Scholar
29Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Moretti, G.A., Buluggiu, E., Vera, A., and Matacotta, F. C., Phys. Rev. B 36 (13), 7241 (1987).CrossRefGoogle Scholar
30Khachaturyan, A. G., Theory of Structural Transformations in Solids (John Wiley and Sons, New York, 1983).Google Scholar
31Arlt, G., Hennings, D., and With, G. de, J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
32Rice, R. W. and Pohanka, R. C., J. Amer. Ceram. Soc. 62 (11), 559 (1979).CrossRefGoogle Scholar
33Evans, A.G., Acta Metall. 26, 1845 (1978).CrossRefGoogle Scholar
34Clarke, D.R., Acta Metall. 28, 913 (1980).CrossRefGoogle Scholar
35Kodas, T. T., Engler, E.M., Lee, V. Y., Jacowitz, R., Baum, T. H., Roche, K., Parkin, S. S., Young, W. S., Hughes, S., Kleder, J., and Auser, W., Appl. Phys. Lett. 52 (19), 1622 (1988).CrossRefGoogle Scholar
36Maeno, Y., Tomita, T., Kyogoku, M., Awaji, S., Aoki, Y., Hoshino, K., Minami, A., and Fujita, T., Nature 328 (6130), 512 (1987).CrossRefGoogle Scholar
37Segre, C. U., Dabrowski, B., Hinks, D. G., Zhang, K., Jorgensen, J. D., Beno, M. A., and Schuller, I. K., Nature 329 (6136), 227 (1987).CrossRefGoogle Scholar
38Takekawa, S., Nozaki, H., Ishizawa, Y., and Iyi, N., Jpn. J. Appl. Phys. Part 2 26 (12), L2076 (1987).CrossRefGoogle Scholar
39Hiroi, Z., Tanako, M., Takeda, Y., Kanno, R., and Bando, Y., Jpn. J. Appl. Phys. 27 (4), L580 (1988).CrossRefGoogle Scholar
40Oda, Y., Fujita, H., Toyoda, H., Kaneko, T., Kohara, T., Nakada, I., and Asayama, K., Jpn. J. Appl. Phys. Part 2 26 (10), L1660 (1987).CrossRefGoogle Scholar
41Bordet, P., Hodeau, J. L., Strobel, P., Marezio, M., and Santoro, A., Solid State Commun. (submitted, 1988).Google Scholar
42Alford, N. McN., Birchall, J. D., Clegg, W. J., Harmer, M. A., Kendal, K., and Jones, D. H., J. Mat. Sci. 23, 761 (1988).CrossRefGoogle Scholar
43Cook, R.F., Dinger, T.R., and Clarke, D.R., Appl. Phys. Lett. 51 (6), 454 (1987).CrossRefGoogle Scholar