Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T08:34:05.277Z Has data issue: false hasContentIssue false

The effect of excess neodymia on the grain growth of Nd1+xBa2−xCu3Oy solid solutions

Published online by Cambridge University Press:  31 January 2011

Russell B. Rogenski
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Kenneth H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Alexander L. Vasiliev
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Eric P. Kvam
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

The grain growth of dense, fine-grained Nd1+xBa2−xCu3Oy (x = 0.1−0.4) specimens has been examined in pure O2(g) at 938 °C and 967 °C. No detectable change in average grain size was observed for Nd1.4Ba1.6Cu3Oy within 72 h at 967 °C; however, a significant increase in average grain size developed between 18 and 24 h at 967 °C for Nd1.3Ba1.7Cu3Oy, and within 8−12 h at ≤967 °C for Nd1.2Ba1.8Cu3Oy and Nd1.1Ba1.9Cu3Oy. Microstructural analyses revealed that sudden changes in average grain size coincided with the formation of relatively large (abnormal) grains. A broadening of the grain size distribution was also observed. TEM analyses revealed that grain boundaries were free of second phases. The possible role of anisotropy in grain boundary energy and/or mobility on grain growth is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yun, J., Harmer, M. P., and Chou, Y. T., J. Mater. Res. 9, 13421349 (1994).CrossRefGoogle Scholar
2.Chu, C. T. and Dunn, B., J. Mater. Res. 5, 18191826 (1990).CrossRefGoogle Scholar
3.Richards, L. E., Hoff, H. A., and Aggarwal, P. K., J. Electron. Mater. 22 (10), 12331239 (1993).CrossRefGoogle Scholar
4.Shin, M. W., Hare, T. M., Kingon, A. I., and Koch, C. C., J. Mater. Res. 6, 20262034 (1991).CrossRefGoogle Scholar
5.Jeong, I-K., Kim, D-Y., Khim, Z. G., and Kwon, S. J., Mater. Lett. 8 (3,4), 9194 (1989).Google Scholar
6.Nichols, F. A., J. Appl. Phys. 37 (13), 45994602 (1966).CrossRefGoogle Scholar
7.Lay, K. W., J. Am. Ceram. Soc. 51 (7), 373376 (1968).CrossRefGoogle Scholar
8.Aselage, T. and Keefer, K., J. Mater. Res. 3, 12791291 (1988).CrossRefGoogle Scholar
9.Ullman, J. E., McCallum, R. W., and Verhoeven, J. D., J. Mater. Res. 4, 752754 (1988).CrossRefGoogle Scholar
10.Lay, K. W. and Renlund, G. M., J. Am. Ceram. Soc. 73 (5), 12081213 (1990).CrossRefGoogle Scholar
11.Wong-Ng, W. and Cook, L. P., J. Am. Ceram. Soc. 77 (7), 18831888 (1994).CrossRefGoogle Scholar
12.MacManus-Driscoll, J. L., Adv. Mater. 9 (6), 457473 (1997).CrossRefGoogle Scholar
13.Zhang, W., Osamura, K., and Ochiai, S., J. Am. Ceram. Soc. 73 (7), 19581964 (1990).CrossRefGoogle Scholar
14.Segre, C. U., Dabrowski, B., Hinks, D. G., Zhang, K., Jorgensen, J. d., Beno, M. A., and Schuller, I. K., Nature (London) 329 (17), 227229 (1987).CrossRefGoogle Scholar
15.Izumi, F., Takekawa, S., Matsui, Y., Iyi, N., Asano, H., Ishigaki, T., and Watanabe, N., Jpn. J. Appl. Phys. 26 (10), L16161619 (1987).CrossRefGoogle Scholar
16.Takita, K., Katoh, H., Akinaga, H., Nishino, M., Ishigaki, T., and Asano, H., Jpn. J. Appl. Phys. 27 (1), L57–L60 (1988).CrossRefGoogle Scholar
17.Li, S., Hayri, A., Ramanujachary, K. V., and Greenblatt, M., Phys. Rev. B 38 (4), 24502454 (1988).CrossRefGoogle Scholar
18.Goodilin, E., Kambara, M., Umeda, T., and Shiohara, Y., Physica C 289, 251264 (1997).CrossRefGoogle Scholar
19.Karen, P., Fjellvag, H., Braaten, O., Kjekshus, A., and Bratsberg, H., Acta Chem. Scand. 44, 9941001 (1990).CrossRefGoogle Scholar
20.Wu, H., Kramer, M. J., Dennis, K. W., and McCallum, R. W., Physica C 290, 252264 (1997).CrossRefGoogle Scholar
21.Yoo, S. I., McCallum, R. W., Physica C 210, 147156 (1993).CrossRefGoogle Scholar
22.Osamura, K. and Zhang, W., Z. Metallkd. 84 (8), 522528 (1993).Google Scholar
23.Wong-Ng, W., Cook, L. P., Paretzkin, B., Hill, M. D., and Stalick, J. K., J. Am. Ceram. Soc. 77 (9), 23542362 (1994).CrossRefGoogle Scholar
24.Kramer, M. J., Yoo, S. I., McCallum, R. W., Yelon, W. B., Xie, H., and Allenspach, P., Physica C 219, 145155 (1994).CrossRefGoogle Scholar
25.Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B 25, 925946 (1969); D. Shannon, Acta Crystallogr. A 32, 751–767 (1976).CrossRefGoogle Scholar
26.Sano, M., Hayakawa, Y., and Kumagawa, M., Supercond. Sci. Technol. 9, 478482 (1996).CrossRefGoogle Scholar
27.Shin, M. W., Hare, T. M., Kingon, A. I., and Koch, C. C., J. Mater. Res. 7, 31943201 (1992).CrossRefGoogle Scholar
28.Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33 (3), 509520 (1985).CrossRefGoogle Scholar
29.Ashida, T. and Toyoda, H., Jpn. J. Appl. Phys. 5 (4), 269274 (1966).CrossRefGoogle Scholar
30.Murakami, T., Miyashita, T., Nakahara, M., and Sekine, E., J. Am. Ceram. Soc. 56 (6), 294297 (1973).CrossRefGoogle Scholar
31.Burn, I. and Neirman, S., J. Mater. Sci. 17, 35103524 (1982).CrossRefGoogle Scholar
32.Yan, M. F., Mater. Sci. Eng. 48, 5372 (1981).CrossRefGoogle Scholar
33.Peng, C-J. and Chiang, Y-M., J. Mater. Res. 5, 12371245 (1990).CrossRefGoogle Scholar
34.Dynna, G. M. and Chiang, Y. M., in Ceramic Transactions: Sintering of Advanced Ceramics (The American Ceramic Society, Westerville, OH, 1990), Vol. 7, pp. 547561.Google Scholar
35.Pechini, M. P., U.S. Patent No. 3,330,697, July 11, 1967.Google Scholar
36.Sanjines, R., Thampi, K. R., and Kiwi, J., J. Am. Ceram. Soc. 71 (12), C512–C514 (1988).Google Scholar
37.Preston-Thomas, H., Metrologia 27, 310 (1990).CrossRefGoogle Scholar
38. pp. 227249 in 1997 Annual Book of ASTM Standards (The American Society for Testing and Materials, West Conshohocken, PA, 1997), Volume 03.01.Google Scholar
39. JCPDS (Joint Committee on Powder Diffraction Standards) Card Files: #22-1056 for Bao, #7-233 for BaO2, #6–408 and #43–1023 for Nd2O3, #45–937 for CuO, #42–1499 for BaNd2O4, #38–342 for (Nd0.925Ba0.075)2CuO42x, #39–1390 and #24–777 for Nd2CuO4, #44–404 and #39–1497 for orthorhombic Ba2CuO3, #42–517 for tetragonal Ba2CuO3, #42–1050 for Ba2CuO3.33, #44–138 for Ba2Cu3O51x, #40–762 for Ba2Cu3O5.9, #38–1402 for BaCuO2, #42–4997 for Nd2BaCuO5, #45–634 for Nd1.5Ba1.5Cu3O7.03.Google Scholar
40.Smith, D. K., in Modern Powder Diffraction, Reviews in Mineralogy, edited by Bish, D. L. and Post, J. E. (The Mineralogical Society of America, Washington, DC, 1989), Vol. 20, pp. 192194.Google Scholar
41.Young, H. D., Statistical Treatment of Experimental Data (McGraw-Hill, Inc., New York, 1962), pp. 101126.Google Scholar
42.Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51 (11), 57255744 (1980).CrossRefGoogle Scholar
43.Dimesso, L., Marchetta, M., Calestani, G., Migliori, A., and Masini, M., Supercond. Sci. Technol. 10, 347355 (1997).CrossRefGoogle Scholar
44.Tien, J. K., Borofka, J. C., Hendrix, B. C., Caulfield, T., and Reichman, S. H., Metall. Trans. 19A (7), 18411847 (1988).CrossRefGoogle Scholar
45.Richards, K. T. and Benfer, R. H., J. Am. Ceram. Soc. 74 (8), 20142017 (1991).CrossRefGoogle Scholar
46.Niska, J., Loberg, B., and Easterling, K., J. Am. Ceram. Soc. 72 (8), 15081510 (1991).CrossRefGoogle Scholar
47.Hendrix, B. C., Abe, T., Borofka, J. C., Tien, J. K., and Caulfield, T., Appl. Phys. Lett. 55 (3), 313314 (1989).CrossRefGoogle Scholar
48.Williams, R. K., Alexander, K. B., Brynestad, J., Henson, T. J., Kroeger, D. M., Lindemer, T. B., Marsh, G. C., and Scarbrough, J. O., J. Appl. Phys. 67 (11), 69346939 (1990).CrossRefGoogle Scholar
49.van der Maas, J., Gasparov, V. A., and Pavuna, D., Nature (London) 328 (13), 603604 (1987).CrossRefGoogle Scholar
50.Ekin, J. W., Larson, T. M., Bergren, N. F., Nelson, A. J., Swartzlander, A. B., Kazmerski, L. L., Panson, A. J., and Blankenship, B. A., Appl. Phys. Lett. 52 (21), 18191821 (1988).CrossRefGoogle Scholar
51.Deslandes, F., Raveau, B., Dubots, P., and Legat, D., Solid State Commun. 71 (5), 407410 (1989).CrossRefGoogle Scholar
52.May, J. E. and Turnbull, D., Trans. AIME 212, 769781 (1958).Google Scholar
53.Hillert, M., Acta Metall. 13 (3), 227238 (1965).CrossRefGoogle Scholar
54.Burke, J. E., in Ceramic Microstructures, edited by Fulrath, R. M. and Pask, J. A. (John Wiley and Sons, Inc., New York, 1968), pp. 681700.Google Scholar
55.Chol, G. R., J. Am. Ceram. Soc. 54 (1), 3439 (1971).CrossRefGoogle Scholar
56.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 461468.Google Scholar
57.Brook, R. J., in Ceramic Fabrication Processes, Treatise on Materials Science and Technology, edited by Wang, F. Y. (Academic Press, Inc., Orlando, FL, 1976), Vol. 9.Google Scholar
58.Yan, M. F., Cannon, R. M., and Bowen, H. K., in Ceramic Microstructures ‘76, edited by Fulrath, R. M. and Pask, J. A. (Westview Press, Boulder, CO, 1977), pp. 276307.Google Scholar
59.Srolovitz, D. J., Grest, G. S., and Anderson, M. P., Acta Metall. 33 (12), 22332247 (1985).CrossRefGoogle Scholar
60.Rollett, A. D., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 37 (4), 12271240 (1989).CrossRefGoogle Scholar
61.Hillert, M., Scripta Metall. 22, 10351036 (1988).CrossRefGoogle Scholar
62.Thompson, C. V., Frost, H. J., and Spaepen, F., Acta Metall. 35 (4), 887890 (1987).CrossRefGoogle Scholar
63.Rios, P. R., Acta Metall. Mater. 40 (10), 27652768 (1992).CrossRefGoogle Scholar
64.Hennings, D. F. K., Janssen, R., and Reynen, P. J. L., J. Am. Ceram. Soc. 70 (1), 2327 (1987).CrossRefGoogle Scholar
65.Okazaki, K. and Conrad, H., Metall. Trans. 3 (9), 24112421 (1972).CrossRefGoogle Scholar
66.Nunez, C. and Domingo, S., Metall. Trans. A 19A (12), 29372944 (1988).CrossRefGoogle Scholar
67.Smith, D. A., Chisholm, M. F., and Clabes, J., J. Appl. Phys. Lett. 53 (23), 23442345 (1988).CrossRefGoogle Scholar