Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T11:16:34.442Z Has data issue: false hasContentIssue false

Effect of annealing temperature on structure, magnetic and microwave absorption properties of Fe–B submicrometer particles

Published online by Cambridge University Press:  20 October 2016

Xuan Zhong
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
Jing-Wei Cheng
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
Ying Liu
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
Xiu-Chen Zhao*
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*
a) Address all correspondence to this author. e-mail: 13810187159@163.com
Get access

Abstract

In this paper, Fe–B amorphous submicrometer particles with a size of 180 nm were synthesized by liquid phase reduction method. The as-synthesized Fe–B amorphous submicrometer particles were annealed at 400, 500, and 600 °C, respectively. The effect of annealing temperature on structure, magnetic properties, and microwave absorption properties of Fe–B submicrometer particles was investigated. Results show that the as-synthesized Fe–B amorphous submicrometer particles were crystallized into Fe2B phase when the annealing temperature was 479 °C. The microwave absorption properties of Fe–B submicrometer particles were dependent on annealing temperature, the paraffin composites containing 60 wt% Fe–B submicrometer particles annealed at 500 °C showed a minimal reflection loss (RL) as low as −43.16 dB at 3.12 GHz with a thickness of 5.1 mm, and the effective microwave absorption (RL < −20 dB) was obtained in a wide frequency range of 2.28–10.48 GHz by adjusting the thickness from 1.8 to 6 mm, indicating excellent electromagnetic absorption properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, Y.K., Ma, M., Zhang, Y., and Gu, N.: Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf., A 245(1–3), 15 (2004).CrossRefGoogle Scholar
Stergiou, C.A. and Litsardakis, G.: Y-type hexagonal ferrites for microwave absorber and antenna applications. J. Magn. Magn. Mater. 405, 54 (2016).Google Scholar
Petrov, V. and Gagulin, V.: Microwave absorbing materials. Inorg. Mater. 37(2), 93 (2001).Google Scholar
Abbas, S.M., Dixit, A.K., Chatterjee, R., and Goel, T.C.: Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites. J. Magn. Magn. Mater. 309(1), 20 (2007).CrossRefGoogle Scholar
Li, H., Wang, J., Huang, Y., Yan, X., Qi, J., Liu, J., and Zhang, Y.: Microwave absorption properties of carbon nanotubes and tetrapod-shaped ZnO nanostructures composites. Mater. Sci. Eng., B 175(1), 81 (2010).Google Scholar
Zhao, B., Shao, G., Fan, B., Xie, Y., Wang, B., and Zhang, R.: Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. J. Mater. Res. 29(13), 1431 (2014).CrossRefGoogle Scholar
Wang, L., Wu, H., Shen, Z., Guo, S., and Wang, Y.: Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites. Mater. Sci. Eng., B 177(18), 1649 (2012).Google Scholar
Lian, L-X., Deng, L.J., Han, M., Tang, W., and Feng, S-D.: Microwave electromagnetic and absorption properties of Nd2Fe14B/alpha-Fe nanocomposites in the 0.5–18 and 26.5–40 GHz ranges. J. Appl. Phys. 101(9), 09M520 (2007).Google Scholar
Zhao, R., Lei, Y., Zhan, Y., Meng, F., Jia, K., Zhong, J., and Liu, X.: Solid-state pyrolysis of iron phthalocyanine polymer into iron nanowire inside carbon nanotube and their novel electromagnetic properties. J. Mater. Res. 26(18), 2369 (2011).Google Scholar
Zhang, L., Yu, X., Hu, H., Li, Y., Wu, M., Wang, Z., Li, G., Sun, Z., and Chen, C.: Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).Google Scholar
Xie, G., Wang, P., Zhang, B., Yuan, L., Shi, Y., Lin, P., and Lu, H.: Electromagnetic wave-absorption properties of rapidly quenched of Nd–Fe–B nanocomposites with low Nd content. J. Magn. Magn. Mater. 320(6), 1026 (2008).Google Scholar
Ocon, J.D., Trinh Ngoc, T., Yi, Y., de Leon, R.L., Lee, J.K., and Lee, J.: Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles. J. Power Sources 243, 444 (2013).Google Scholar
Liu, J.R., Itoh, M., and Machida, K.: Electromagnetic wave absorption properties of alpha-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range. Appl. Phys. Lett. 83(19), 4017 (2003).Google Scholar
Liu, J.R., Itoh, M., Horikawa, T., Itakura, M., Kuwano, N., and Machida, K.: Complex permittivity, permeability and electromagnetic wave absorption of alpha-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. J. Phys. D: Appl. Phys. 37(19), 2737 (2004).Google Scholar
Jin, Z. and Liu, J.: Rapid thermal processing of magnetic materials. J. Phys. D: Appl. Phys. 39(14), R227 (2006).CrossRefGoogle Scholar
Hirosawa, S., Kanekiyo, H., Shigemoto, Y., Murakami, K., Miyoshi, T., and Shioya, Y.: Solidification and crystallization behaviors of Fe3B/Nd2Fe14B-based nanocomposite permanent-magnet alloys and influence of micro-alloyed Cu, Nb and Zr. J. Magn. Magn. Mater. 239(1), 424 (2002).Google Scholar
Liang, D.F., Han, M.G., Yan, B., and Deng, L.J.: Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires. Chin. Phys. 16(2), 542 (2007).Google Scholar
Ma, S., Huang, Z., Xing, J., Liu, G., He, Y., Fu, H., Wang, Y., Li, Y., and Yi, D.: Effect of crystal orientation on microstructure and properties of bulk Fe2B intermetallic. J. Mater. Res. 30(2), 257 (2015).CrossRefGoogle Scholar
Zhao, H., Sun, X., Mao, C., and Du, J.: Preparation and microwave-absorbing properties of NiFe2O4-polystyrene composites. Phys. B 404(1), 69 (2009).CrossRefGoogle Scholar
Yousefi, M.H., Manouchehri, S., Arab, A., Mozaffari, M., Amiri, G.R., and Amighian, J.: Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties. Mater. Res. Bull. 45(12), 1792 (2010).Google Scholar
Lee, G-Y., Kwon, S-K., and Lee, J-S.: Annealing effect on microstructure and magnetic properties of flake-shaped agglomerates of Ni–20wt% Fe nanopowder. J. Alloys Compd. 613, 164 (2014).Google Scholar
Sun, X., Gutierrez, A., Yacaman, M.J., Dong, X., and Jin, S.: Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater. Sci. Eng., A 286(1), 157 (2000).Google Scholar
Tang, N., Zhong, W., Liu, W., Jiang, H., Wu, X., and Du, Y.: Synthesis and complex permeability of Ni/SiO2 nanocomposite. Nanotechnology 15(12), 1756 (2004).CrossRefGoogle Scholar
Tyagi, S., Baskey, H.B., Agarwala, R.C., Agarwala, V., and Shami, T.C.: Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram. Int. 37(7), 2631 (2011).CrossRefGoogle Scholar
Zhao, B., Fan, B., Shao, G., Zhao, W., and Zhang, R.: Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron Ni walnut with tunable electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 7(33), 18815 (2015).Google Scholar
Zhao, B., Zhao, W., Shao, G., Fan, B., and Zhang, R.: Morphology-control synthesis of a core–shell structured NiCu alloy with tunable electromagnetic-wave absorption Capabilities. ACS Appl. Mater. Interfaces 7(23), 12951 (2015).CrossRefGoogle ScholarPubMed
Kim, S.S., Kim, S.T., Ahn, J.M., and Kim, K.H.: Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater. 271(1), 39 (2004).Google Scholar
Ye, F., Zhang, L., Yin, X., Zhang, Y., Kong, L., Li, Q., Liu, Y., and Cheng, L.: Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures. J. Eur. Ceram. Soc. 33(8), 1469 (2013).Google Scholar
Helfen, L., Wu, D.T., Birringer, R., and Krill, C.E.: The impact of stochastic atomic jumps on the kinetics of curvature-driven grain growth. Acta Mater. 51(10), 2743 (2003).Google Scholar
Zhao, B., Zhao, W., Shao, G., Fan, B., and Zhang, R.: Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton Trans. 44(36), 15984 (2015).Google Scholar
Zhang, X.F., Dong, X.L., Huang, H., Liu, Y.Y., Wang, W.N., Zhu, X.G., Lv, B., Lei, J.P., and Lee, C.G.: Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89(5), 053115 (2006).Google Scholar
Zhao, B., Shao, G., Fan, B., Zhao, W., and Zhang, R.: Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys. Chem. Chem. Phys. 17(4), 2531 (2015).Google Scholar
Ruan, S.P., Xu, B.K., Suo, H., Wu, F.Q., Xiang, S.Q., and Zhao, M.Y.: Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material. J. Magn. Magn. Mater. 212(1–2), 175 (2000).Google Scholar
Xie, G., Song, X., Zhang, B., Tang, D., Bian, Q., and Lu, H.: Microstructure and electromagnetic properties of flake-like Nd–Fe–B nanocomposite powders with different milling times. Powder Technol. 210(3), 220 (2011).Google Scholar
Aharoni, A.: Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69(11), 7762 (1991).CrossRefGoogle Scholar
Gupta, V., Patra, M.K., Shukla, A., Saini, L., Songara, S., Jani, R., Vadera, S.R., and Kumar, N.: Synthesis and investigations on microwave absorption properties of core–shell FeCo(C) alloy nanoparticles. Sci. Adv. Mater. 6(6), 1196 (2014).CrossRefGoogle Scholar
Kim, M.S., Min, E.H., and Koh, J.G.: Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. J. Magn. Magn. Mater. 321(6), 581 (2009).Google Scholar
Zhao, B., Fan, B., Shao, G., Wang, B., Pian, X., Li, W., and Zhang, R.: Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 307, 293 (2014).Google Scholar
Zhao, B., Shao, G., Fan, B., Xie, Y., and Zhang, R.: Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195 (2014).Google Scholar
Deng, L. and Han, M.: Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91(2), 023119 (2007).Google Scholar
Che, R.C., Zhi, C.Y., Liang, C.Y., and Zhou, X.G.: Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006).Google Scholar
Lv, H., Ji, G., Liang, X., Zhang, H., and Du, Y.: A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3(19), 5056 (2015).Google Scholar
Kong, L., Yin, X., Ye, F., Li, Q., Zhang, L., and Cheng, L.: Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J. Phys. Chem. C 117(5), 2135 (2013).Google Scholar
Sunny, V., Kurian, P., Mohanan, P., Joy, P.A., and Anantharaman, M.R.: A flexible microwave absorber based on nickel ferrite nanocomposite. J. Alloys Compd. 489(1), 297 (2010).Google Scholar