Published online by Cambridge University Press: 03 March 2011
Ti–Al–Si–C powder mixtures of two different compositions, namely, 58Ti–30Al–6Si–6C (at.%) and 50Ti–15Al–20Si–15C (at.%), were mechanically alloyed to investigate the solid-state reactions during such a process. The mechanically alloyed powders were characterized as a function of milling time by x-ray diffraction (XRD), scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy (TEM). XRD results showed that solid solutions of Ti were formed for a powder mixture of 58Ti–30Al–6Si–6C in about 20 h of milling, whereas Ti5(Al,Si)3 and Ti(Al,Si)C compounds started to form in the powder mixture of 50Ti–15Al–20Si–15C within just 5 h of milling. TEM observations demonstrated that the particle sizes were of nano and submicron scale in both cases. This investigation indicated that in mechanically alloyed Ti–Al–Si–C powder mixtures, the main solid-state reactions are due to interdiffusion and mechanically induced self-propagating reaction.