Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T01:46:48.666Z Has data issue: false hasContentIssue false

Diffraction studies of cubic phase stability in undoped zirconia thin films

Published online by Cambridge University Press:  31 January 2011

S. C. Moulzolf
Affiliation:
Laboratory for Surface Science and Technology, Department of Physics and Astronomy, University of Maine, Orono, Maine 04469-5764
R. J. Lad
Affiliation:
Laboratory for Surface Science and Technology, Department of Physics and Astronomy, University of Maine, Orono, Maine 04469-5764
Get access

Abstract

Pure stoichiometric ZrO2 films were deposited on amorphous silica substrates by electron beam evaporation of Zr in the presence of an electron cyclotron resonance oxygen plasma. Grain size, strain, and texture were analyzed by x-ray diffraction and reflection high-energy electron diffraction. Films grown at room temperature are polycrystalline and exist in the cubic phase. Growth at elevated temperatures produces coexisting cubic and monoclinic phases and shows a maximum critical grain size of ??~10 nm for stabilization of the cubic phase. Pole figure analysis indicates a preferred cubic [200] fiber axis for room-temperature growth and dual monoclinic {111} and in-plane textures for films grown at 400 °C. Postdeposition annealing experiments confirm the existence of a critical grain size and suggest mechanisms for grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.ASM Engineering Materials Reference Book, 2nd ed., edited by Bauccio, M. (ASM International, Materials Park, OH, 1994), p. 263.Google Scholar
2.Engineered Materials Handbook, desk ed., edited by Gauthier, M.M. (ASM International, Materials Park, OH, 1995), p. 937.Google Scholar
3.Garvie, R.C., J. Phys. Chem. 82, 218 (1978).CrossRefGoogle Scholar
4.Stubican, V.S., in Advances in Ceramics: Science and Technology of Zirconia III, edited by Yanagida, H., Yamamoto, N., and Somiya, S. (American Ceramic Society, Columbus, OH, 1988), p. 71.Google Scholar
5.Kountouros, P. and Petzow, G., in Science and Technology of Zirconia V, edited by Badwal, S., Bannister, J., and Hannink, R. (Technomic, Lancaster, PA, 1993), p. 30.Google Scholar
6.Aita, C.R., Wiggins, M.D., Whig, R., Scanlan, C.M., and Gajdardziska-Josifovska, M., J. Appl. Phys. 79, 1176 (1996).CrossRefGoogle Scholar
7.DeLoach, J.R. and Aita, C.R. (unpublished).Google Scholar
8.Moulzolf, S.C., Yu, Y., Frankel, D.J., and Lad, R.J., J. Vac. Sci. Technol., A 15, 1211 (1997).Google Scholar
9.Moulzolf, S.C., Ph.D. Thesis, University of Maine, Orono, ME, 1999.Google Scholar
10.Jung, T. and Westphal, A., Mater. Sci. Eng., A 140, 528 (1991).Google Scholar
11.Suhail, M.H., Mohan, G., and Mohan, S., J. Vac. Sci. Technol., A 9, 2675 (1991).Google Scholar
12.Rujkorakarn, R., and Sites, J.R., J. Vac. Sci. Technol., A 4, 568 (1986).CrossRefGoogle Scholar
13.Kao, A.S. and Gorman, G.L., J. Appl. Phys. 67, 3826 (1990).Google Scholar
14.Wang, Y.H. and Li, X.P., Thin Solid Films 250, 132 (1994).CrossRefGoogle Scholar
15.Jones, F., J. Vac. Sci. Technol., A 6, 3088 (1988).CrossRefGoogle Scholar
16.Aita, C.R., J. Vac. Sci. Technol., A 11, 1540 (1993).CrossRefGoogle Scholar
17.Krishna, M.G., Rao, K.N., and Mohan, S., Appl. Phys. Lett. 57, 557 (1990).Google Scholar
18.Martin, P.J., Netterfield, R.P., and Sainty, W.G., J. Appl. Phys. 55, 235 (1984).Google Scholar
19.Wavemat Inc., 44191 Plymouth Oaks Blvd., Suite 100, Plymouth, MI 48170.Google Scholar
20.Goehner, R.P. and Eatough, M.O., Powder Diffraction 7, 2 (1992).CrossRefGoogle Scholar
21.Schulz, L.G., J. Appl. Phys. 20, 1030 (1949).Google Scholar
22.Langford, J.I., NIST Special Publication 846, 110 (1992).Google Scholar
23.de Keijser, Th.H., Langford, J.I., Mittemeijer, E.J., and Vogels, A.B.P, J. Appl. Crystallogr. 15, 308 (1982).CrossRefGoogle Scholar
24.Delhez, R., de Keijser, Th.H., Mittemeijer, E.J., and Langford, J.I., Aust. J. Phys. 41, 213 (1988).CrossRefGoogle Scholar
25.Wilson, A.J.C, Mathematical Theory of X-Ray Powder Diffractometry (Philips, Eindhoven, Netherlands, 1963), p. 92.Google Scholar
26.Langford, J.I., Aust. J. Phys. 41, 173 (1988).CrossRefGoogle Scholar
27.Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), pp. 512513.Google Scholar
28.Aita, C.R. (private communication).Google Scholar
29.Robinson, A.W., Gardner, P., Stampfl, A.P.J, Martin, R., and Nyberg, G., J. Electron Spectrosc. Relat. Phenom. 94, 97 (1998).Google Scholar
30.Balzar, D. and Popovic, S., J. Appl. Crystallogr. 29, 16 (1996).CrossRefGoogle Scholar
31.Langford, J.I., NBS Special Publication 567, 255 (1980).Google Scholar
32.Bauer, E., in Single Crystal Films, edited by Francombe, M.H. and Sato, H. (MacMillan, New York, 1964), p. 43.Google Scholar