Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T19:56:34.409Z Has data issue: false hasContentIssue false

The demonstration of Y2BaCuO5 particle segregation in melt-processed YBa2Cu3O7−x through a computer visualization model

Published online by Cambridge University Press:  31 January 2011

C. Varanasi
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556–4537
M. A. Black
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556–4537
P. J. McGinn
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556–4537
Get access

Abstract

In melt-processed YBa2Cu3O7−x (123) microstructures, often unreacted Y2BaCuO5 (211) particles are observed to be present in an inhomogeneous manner delineating distinguishable patterns. The presence of these patterns in 123 is more clearly observed in the case of low 211 volume concentration and also when the 211 particle size is small. The observed patterns are believed to be due to 211 particle segregation in 123 domains in specific planes during melt texture growth. In the present paper a software program is used to draw a three-dimensional visualization model to demonstrate a possible structure of 211 particle segregation in 123 domains and to explain the presence of observed patterns in the microstructures. The formation of such a 211 particle segregation is explained in the light of previously proposed 123 growth mechanisms.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, M., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.McGinn, P. J., in High Temperature Superconducting Materials Science and Engineering: New Concepts and Technology, edited by Shi, D. (Pergamon, New York, 1994), p. 345.Google Scholar
3.Varanasi, C., McGinn, P. J., and Sengupta, S., J. Electron. Mater. 23, 1143 (1994).Google Scholar
4.Bateman, C. A., Zhang, J., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
5.Cima, M., Flemings, M., Figueredo, A., Nakade, M., Ishii, H., Brody, H., and Haggerty, J., J. Appl. Phys. 72, 179 (1992).Google Scholar
6.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).Google Scholar
7.Rodriguez, M., Chen, B. J., and Snyder, R., Physica C 195, 185 (1992).CrossRefGoogle Scholar
8.Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).Google Scholar
9.Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, P. D., and Burns, S. J., Physica C 210, 197 (1993).Google Scholar
10.Cloots, R., Vandewalle, N., and Ausloos, M.Appl. Phys. Lett. 65, 3386 (1994).CrossRefGoogle Scholar
11.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9 1350 (1994).CrossRefGoogle Scholar
12.Izumi, T. and Shiohara, Y., J. Mater. Res. 7, 16 (1992).Google Scholar
13.Rohatgi, P. K., Asthana, R., and Yarandi, F., in Solidification of Metal Matrix Composites, edited by Rohatgi, P. K. (TMS, Warrendale, PA, 1990), p. 51.Google Scholar
14.Stefanescu, D. M. and Dhindaw, B.K., in Metals Handbook (ASM INTERNATIONAL, Metals Park, OH, 1988), Vol. 15, p. 142.Google Scholar
15.Potschke, J. and Rogge, V., J. Cryst. Growth 94, 726 (1989).CrossRefGoogle Scholar
16.Varanasi, C. and McGinn, P. J., Mater. Lett. 17, 205 (1993).Google Scholar
17.Kim, C-J., Kim, K-B., Hong, G-W., Mater. Lett. 21, 9 (1994).Google Scholar
18.Monot, I., Delamare, M P., Wang, J., Desgardin, G., and Raveau, , Physica C 235–240, 457 (1994).CrossRefGoogle Scholar
19.Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Mater. Lett. 20, 283 (1994).Google Scholar
20.Varanasi, C. and McGinn, P. J., Physica C 207, 79 (1993).Google Scholar
21.Balachandran, U., Zhong, W., Youngdahl, C. A., and Poeppel, R., J. Electron. Mater. 22, 1285 (1993).Google Scholar
22.Kim, C. J., Lai, S. H., and Mc, P. J.Ginn, Mater. Lett. 19, 185 (1994).Google Scholar
23.Elber, G., computer code IRIT 5.0.Google Scholar
24.Morita, M., Trouilleux, L., Takebayashi, S., Kimura, K., Tanaka, M., Miyamoto, K., and Hashimoto, M., in Program and Extended Abstracts Int. Workshop on Supercond., Honolulu, June 23–26 (1992), p. 119.Google Scholar
25.Meng, R. L., Gao, L., Gautier-Picard, P., Rairez, D., Sun, Y-Y., and Chu, C. W., Physica C 232, 337 (1994).Google Scholar
26.Zhokhov, A. A. and Emel'chenko, G. A., J. Cryst. Growth 129, 786 (1993).Google Scholar
27.Wagner, C., Z. Electrochem 65, 581 (1961).Google Scholar
28.Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 35, 35 (1961).Google Scholar
29.Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst. Growth 100, 605 (1990).Google Scholar
30.Sun, B. N., Boutellier, R., and Schmid, H., J. Cryst. Growth 157, 189 (1989).Google Scholar
31.Sun, B. N. and Schmid, H., J. Cryst. Growth 100, 297 (1990).Google Scholar
32.Yamada, Y., Nakamura, M., Shiohara, Y., and Tanaka, S., J. Cryst. Growth 148, 241 (1995).Google Scholar
33.Marella, M., Molinas, B., and Burtet, B.Fabris, J. Mater. Sci. 29, 3497 (1994).Google Scholar
34.Jin, S., Kammlott, G. W., Nakahara, S., Tiefel, T. H., and Graebner, J.E., Science 253, 427 (1991).Google Scholar
35.Marella, M., Molinas, B., Burtet Fabris, B., Meregalli, L., and Gerontopoulos, P., J. Mater. Sci. Lett. 13, 1108 (1994).CrossRefGoogle Scholar
36.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., in Introduction to Ceramics (John Wiley, New York, 1976), p. 340.Google Scholar
37.Ohtsu, K., Yamada, Y., Izumi, T., Nakamura, Y., and Shio-hara, Y., in Advances in Superconductivity V, Proceedings of ISS 92 (Springer-Verlag, Tokyo, 1993), p. 581.Google Scholar
38.Vandewalle, N., Cloots, R., and Ausloos, M., J. Mater. Res. 10, 268 (1995).CrossRefGoogle Scholar
39.Vandewalle, N., Cloots, R., and Ausloos, M., Physica C 235–240, 427 (1994).Google Scholar
40.Hannay, C., Cloots, R., and Ausloos, M., Solid State Commun. 83, 349 (1992).Google Scholar