Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T11:31:40.223Z Has data issue: false hasContentIssue false

Crystal-to-amorphous transformation of NiTi induced by cold rolling

Published online by Cambridge University Press:  31 January 2011

J. Koike
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. M. Parkin
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A NiTi intermetallic compound was cold rolled at room temperature by 30% and 60% thickness reductions, and microstructures were studied by means of transmission electron microscopy (TEM). In the cold-rolled samples we observed both a phase of nanometer-sized crystals and an amorphous phase. A substantially high dislocation density, 1013 to 1014/cm2, was evident in the transition region between crystalline and amorphous phases. A simple estimate of the elastic energy arising from this dislocation density is of the same order as the crystallization energy, suggesting that dislocation accumulation is a major driving force for amorphization in cold-rolled NiTi.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example, Less, J.-Common Metals 140 (1988) (Proc. of the 1st Int. Conf. on the Solid-State Amorphizing Transformation, edited by R. Schwarz and W. L. Johnson).CrossRefGoogle Scholar
2Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R., and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).CrossRefGoogle Scholar
3Tallon, J. L., Philos. Mag. A 39, 151 (1979).CrossRefGoogle Scholar
4Meng, W. J., Okamoto, P. R., Kestel, B. J., Thompson, L. J., and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988).CrossRefGoogle Scholar
5Linker, G., Vacuum 36, 493 (1986).CrossRefGoogle Scholar
6Tat'yanin, YE V., Kurdyumov, V. G., and Fedrov, V. B., Fiz. Metal. Metalloved. 62, 133 (1986).Google Scholar
7Aleksandrova, M. M., Blank, V. D., Golobokov, A. E., Koyaev, YU. S., Y, A.Zerr, U., and Estrin, E. I., Phys. Status Solidi A 105, K29 (1988).CrossRefGoogle Scholar
8Hsieh, H. and Yip, S., Phys. Rev. B 39, 7476 (1989).CrossRefGoogle Scholar
9Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. Lett. 62, 1142 (1989).CrossRefGoogle Scholar
10Koike, J., Okamoto, P. R., Rehn, L. E., Bhadra, R., Grimsditch, M., and Meshii, M. (Proc. Mater. Res. Soc. Symp.) (Materials Re-search Society, Pittsburgh, PA, 1990), Vol. 157, p. 777.Google Scholar
11Brimhal, J. L., Kissinger, H. E., and Pelton, A. R., Rad. Effects 90, 241 (1985).CrossRefGoogle Scholar
12Thomas, G., Mori, H., Fujita, H., and Sinclair, R., Scripta Metall. 16, 589 (1982).CrossRefGoogle Scholar
13Mizushima, S., J. Phys. Soc. Jpn. 15, 70 (1960).CrossRefGoogle Scholar
14Kuhlmann-Wilsdorf, D., Phys. Rev. 140, A1599 (1965).CrossRefGoogle Scholar
15Jensen, E. J., Kristensen, W. Damgaard, and Cotterill, R. M. J., Philos. Mag. 27, 623 (1973).CrossRefGoogle Scholar
16Kestel, B. J., Ultramicroscopy 19, 205 (1986).CrossRefGoogle Scholar
17Otsuka, K., Sawamura, T., and Shimizu, K., Phys. Status Solidi A 5, 457 (1971).CrossRefGoogle Scholar
18Knowles, K. M., Philos. Mag. A 45, 357 (1982).CrossRefGoogle Scholar
19Hashimoto, H., Mannami, M., and Naiki, T., Philos. Trans. A 253, 459 (1961).Google Scholar
20Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., in Electron Microscopy of Thin Crystals (Robert E. Krieger Pub. Co., Malabar, FL, 1977), 2nd ed., p. 510.Google Scholar
21Cotterill, P. and Mould, P. R., in Recrystallization and Grain Growth in Metals (Halsted Press, New York, 1976), p. 10.Google Scholar
22Grüneisen, E., in Handbuch der Physik (Julian Springer, Berlin, 1926), Vol. 10, p. 1.Google Scholar
23Mercier, O., Melton, K. N., Gremaud, G., and Hagi, J., J. Appl. Phys. 51, 1833 (1980).Google Scholar
24Buschow, K. H. J., J. Phys. F: Met. Phys. 13, 563 (1983).CrossRefGoogle Scholar
25Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., Acta Metall. 34, 629 (1986).CrossRefGoogle Scholar
26Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4 (6), 1292 (1989).CrossRefGoogle Scholar
27Shultz, R., Trudeau, M., Huot, J. Y., and Van, A.Neste, Phys. Rev. Lett. 62, 2849 (1989).Google Scholar
28Atzmon, M., Unruh, K. M., and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar