Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T04:40:46.992Z Has data issue: false hasContentIssue false

Critical current and microstructure of uniaxially aligned, polycrystalline YBa2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

J.E. Tkaczyk
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
C.L. Briant
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
J.A. DeLuca
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
E.L. Hall
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
P.L. Karas
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
K.W. Lay
Affiliation:
General Electric Corporate Research and Development Center, Schenectady, New York 12301
E. Narumi
Affiliation:
State University of New York at Buffalo, Buffalo, New York 14260
D.T. Shaw
Affiliation:
State University of New York at Buffalo, Buffalo, New York 14260
Get access

Abstract

Three processing routes that generate uniaxial alignment but otherwise yield very different microstructure and critical current are compared. Fine grain size and c-axis alignment are obtained in magnetically aligned ceramics, pyrolyzed thick films, and in situ deposited thin films. The dense, well-aligned microstructure of the in situ process produces the highest zero field critical current Jc > 104 A/cm2 at 77 K. However, the critical current is suppressed in low magnetic field, suggesting that uniaxial alignment is not sufficient to avoid Josephson-type intergranular coupling. Above 1 T, the critical current of the aligned ceramic dominates in spite of its less ideal microstructure. The critical current in this high field region is one to two orders of magnitude greater than that of nonaligned material. This result implies the existence of a 3-d percolative network of strong links.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., Boone, T., and Moore, R., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
2.Shi, Donglu, Chen, J. G., Xu, Ming, Cornelius, A. L., Balachandran, U., and Goretta, K. C., Supercond. Sci. Technol. 3, 222 (1990); J. E. Blendell, C. A. Handwerker, M. D. Vaudin, and E. R. Fuller, Jr., J. Cryst. Growth 89, 93 (1988); F. Stucki, P. Brüesch, and T. Baumann, Physica C 156, 461 (1988).CrossRefGoogle Scholar
3.Alexander, K. B., Kroeger, D. M., Bentley, J., and Brynestad, J., preprint; S. E. Babcock, T. F. Kelly, P. J. Lee, J. M. Seuntjens, L. A. Lavanier, and D. C. Larbalestier, Physica C 152, 25 (1988).CrossRefGoogle Scholar
4.Peterson, R. L. and Ekin, J. W., Physica C 157, 325 (1989).CrossRefGoogle Scholar
5.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
6.Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988); K. Salama, V. Selvamanickam, L. Gao, and K. Sun, Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
7.Küpfer, H., Keller, C., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 55, 1903 (1989).CrossRefGoogle Scholar
8.Mannhart, J. and Tsuei, C. C., Z. Phys. B 77, 55 (1989).CrossRefGoogle Scholar
9.Gyorgy, E. M., van Dover, R. B., Jin, S., Sherwood, R. C., Schneemeyer, L. F., Tiefel, T. H., and Waszczak, J. V., Appl. Phys. Lett. 53, 2223 (1989); G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J.Lam, M. B. Brodsky, and J. W.Downey, Phys. Rev. B 36, 4021 (1987).CrossRefGoogle Scholar
10. The possible role of oxygen vacancies as pinning sites has been suggested by Daeumling, M., Seuntjens, J. M., and Larbalestier, D. C., Nature 346, 332 (1990). Irradiation has been used to raise the critical current density of crystals, as discussed by R. B. van Dover, E. M. Gyorgy, A. E. White, L. F. Schneemeyer, R. J. Felder, and J. V. Waszczak, Appl. Phys. Lett. 56, 2681 (1990).CrossRefGoogle Scholar
11.Deutscher, G., IBM J. Res. Develop. 33, 293 (1989); G. Deutscher, Physica C 53–155, 15 (1988).CrossRefGoogle Scholar
12.Tkaczyk, J. E. and Lay, K. W., J. Mater. Res. 5, 1368 (1990); R. H. Arendt, A. R. Gaddipati, M. F. Garbauskas, E. L. Hall, H. R. Hart, Jr., K. W. Lay, J. D. Livingston, F. E. Luborsky, and L. L. Schilling, in High Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 203.CrossRefGoogle Scholar
13.Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 1792 (1989); B. H. Moeckly, S. E. Russek, D. K. Lathrop, R. A. Buhrman, Jian Li, and J. W. Mayer, Appl. Phys. Lett. 57, 1687 (1990).CrossRefGoogle Scholar
14.Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
15.Mclntyre, P. C., Cima, M. J., Ng, Man Fai, Chiu, R. C., and Rhine, W. E., J. Mater. Res. 5, 2771 (1990).CrossRefGoogle Scholar
16.Ban, E., Matsuoka, Y., and Ogawa, H., J. Appl. Phys. 67, 4367 (1990).CrossRefGoogle Scholar
17.Witanachchi, S., Kwok, H. S., Wang, X. W., and Shaw, D. T., Appl. Phys. Lett. 53, 234 (1988).CrossRefGoogle Scholar
18.Norton, D. P., Lowndes, D. H., Budai, J. D., Christen, D. K., Jones, E. C., Lay, K. W., and Tkaczyk, J. E., Appl. Phys. Lett. 57, 1164 (1990).CrossRefGoogle Scholar
19.McCallum, R. W., J. Metals (January 1989).Google Scholar
20.Müller, P., Schubert, M., Rodig, Ch., Funchs, G., and Fischer, K., Appl. Phys. Lett. 55, 917 (1989); T. M. Shaw, D. Dimos, P. E. Batson, A. G. Schrott, D. R. Clarke, and P. R. Duncombe, J. Mater. Res. 5, 1176 (1990).CrossRefGoogle Scholar
21.Fjellvåg, H., Karen, P., Kjekshus, A., Kofstad, P., and Norby, T., Acta Chem. Scand. A 42, 178 (1988); T. B. Lindemer, C. R. Hubbard, and J. Brynestad, Physica C 167, 312 (1990).CrossRefGoogle Scholar
22.Gao, Y., Li, T., Merkle, K. L., Mundy, J. N., Zhang, C., Balachandran, U., and Poeppel, R. B., Mater. Lett. 9, 347 (1990); Y.Gao, K. L. Merkle, C. Zhang, U. Balachandran, and R. B. Poeppel, J. Mater. Res. 5, 1363 (1990); P. K. Gallagher, Thermochimica Acta 148, 229 (1989).CrossRefGoogle Scholar
23.Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W. II, Zaluzec, N. J., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Supercond. Sci. Technol. 1, 12 (1988).CrossRefGoogle Scholar
24.Chisholm, M. F. and Pennycook, S. J., Nature 351, 47 (1991).CrossRefGoogle Scholar
25.Ekin, J. W., Larson, T. M., Hermann, A. M., Sheng, Z. Z., Togano, K., and Kumakura, H., Physica C 160, 489 (1989).CrossRefGoogle Scholar
26.Tkaczyk, J. E., Lay, K. W., and Hart, H. R., in Superconductivity and Applications, edited by Kwok, H. S., Kao, Yi-Han, and Shaw, D. T. (Plenum Press, New York, 1990), p. 557.CrossRefGoogle Scholar
27.Ekin, J. W., Hart, H. R., Jr., and Gaddipati, A. R., J. Appl. Phys. 68, 2285 (1990).CrossRefGoogle Scholar
28.Dorri, B., Herd, K., Laskaris, E. T., Tkaczyk, J. E., and Lay, K. W., J. Appl. Phys. 27, 1858 (1991).Google Scholar
29.Filipczuk, S. W., Physica C 173, 1 (1991).CrossRefGoogle Scholar
30.Romano, L. T., Wilshaw, P. R., Long, N. J., and Grovenor, C. R. M., Supercond. Sci. Technol. 1, 285 (1988).CrossRefGoogle Scholar
31.Thompson, C. V., J. Appl. Phys. 58, 763 (1985).CrossRefGoogle Scholar
32.Garrison, S. M., Newman, N., Cole, B. F., Cole, K., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).CrossRefGoogle Scholar
33.Fisher, L. M., Il'in, N. V., Podievskikh, N. A., and Zakharachenko, S. I., Solid State Commun. 73, 687 (1990); M. V. Fistul', JETP Lett. 49, 113 (1990).CrossRefGoogle Scholar
34.Ishii, T. and Yamada, T., Physica C 159, 483 (1989).CrossRefGoogle Scholar
35.Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).CrossRefGoogle Scholar