Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:08:24.387Z Has data issue: false hasContentIssue false

A comparative fatigue study of solder/electroless-nickel and solder/copper interfaces

Published online by Cambridge University Press:  31 January 2011

Pi Lin Liu
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Jian Ku Shang
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

The fatigue resistance of the interface between electroless–nickel and the eutectic tin–lead solder alloy was examined in the as-reflowed and aged conditions and compared to fatigue behavior of the copper/solder interface under the same conditions. In the as-reflowed state, the fatigue resistance of the solder/electroless-nickel interface was slightly superior to that of the solder/copper interface. However, after long-term aging, the fatigue resistance of the solder/electroless-nickel interface became far worse in the high crack growth rate regime. Examinations of interfacial microstructures and crack growth mechanisms indicated that the differences in fatigue resistance between the two interfaces were not directly related to the thickness of the intermetallic phase at the interface, as commonly believed, but were due to differences in crack growth mechanisms.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lau, J.H., Ball Grid Array (McGraw-Hill Press, New York, 1995).Google Scholar
2.Baudrand, D.W., in ASM Handbook, Volume 5, Surface Engineering, (ASM International, Materials Park, OH, 1994), p. 290.Google Scholar
3.Tyagi, S.V.S, Tandon, V.K., and Ray, S., Z. Metallkde. 76, 492 (1985).Google Scholar
4.Zhang, Y.Z., Wu, Y.Y., and Yao, M., J. Mater. Sci. Lett. 17, 37 (1998).Google Scholar
5.Bagley, B.G. and Turnbull, D., Acta Metall. 18, 857 (1970).CrossRefGoogle Scholar
6.Lin, K.L. and Lai, P.J., J. Electrochem. Soc. 136, 3803 (1989).CrossRefGoogle Scholar
7.Makhsoos, E.V., Thomas, E.L. and Toth, L.E., Metall. Trans. A 9A, 1449 (1978).Google Scholar
8.Agarwala, R.C. and Ray, S., Z. Metallkde. 79, 472 (1988).Google Scholar
9.Agarwala, R.C. and Ray, S., Z. Metallkde. 83, 199 (1992).Google Scholar
10.Albert, P., Kovac, Z., Lilienthal, H., McGuire, T., and Nakamura, Y., J. Appl. Phys. 38, 1258 (1967).Google Scholar
11.Duncan, R.N., in Proc. EN '93 conference (Gardner Publications, Orlando, FL, 1993), p. 2.Google Scholar
12.Lin, K.L. and Jang, J.M., Mater. Chem. Phys. 38, 33 (1994).Google Scholar
13.Inaba, M., Yamakawa, K., and Iwase, N., IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-13, 119 (1990).CrossRefGoogle Scholar
14.Kang, S.K. and Ramachandran, V., Scr. Metall. 14, 421–24 (1980).CrossRefGoogle Scholar
15.Lee, C.Y. and Lin, K.L., Thin Solid Films 249, 201 (1994).CrossRefGoogle Scholar
16.Tomlinson, W.J. and Rhodes, H.G., J. Mater. Sci. 22, 1769 (1987).CrossRefGoogle Scholar
17.Lin, K.L. and Chen, C.J., J. Mater. Sci., Mater. Electron. 7, 397 (1999).Google Scholar
18.Lin, K.L. and Chang, J.T., Scr. Metall. 30, 559 (1994).CrossRefGoogle Scholar
19.Lee, C.Y. and Lin, K.L., Thin Solid Films 229, 63 (1993).CrossRefGoogle Scholar
20.Jang, J.W., Kim, P.G., Tu, K.N., Frear, D.R., and Thompson, P., J. Appl. Phys. 85, 8456 (1999).CrossRefGoogle Scholar
21.Olsen, D., Wright, R., and Berg, H., in Proc. 13th Am. Reliability Phys. Symp. (Vicks Lithograph, Las Vegas, NV, 1975), p. 80.Google Scholar
22.Keller, H.N., IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 433–39 (1986).CrossRefGoogle Scholar
23.Frear, D.R., Hosking, F.M., and Vianco, P.T., in Materials Developments in Microelectronic Packaging Conf. Proceedings (Montreal, Quebec, Canada, 1991), p. 229.Google Scholar
24.Bogy, D.B., J. Appl. Mech. 35, 460 (1968).CrossRefGoogle Scholar
25.Bogy, D.B., Int. J. Solids Struct. 6, 1287 (1970).CrossRefGoogle Scholar
26.Munz, D. and Yang, Y.Y., J. Appl. Mech. 59, 857 (1992).Google Scholar
27.Rice, J.R., J. Appl. Mech. 55, 98 (1988).CrossRefGoogle Scholar
28.Hutchinson, J.W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J.W. and Wu, E.M. (Academic Press, San Diego, CA, 1992), Vol. 29, p. 64.Google Scholar
29.Thouless, M.D., Acta Mater. 38, 1135 (1990).Google Scholar
30.Zhang, Z. and Shang, J.K., Metall. Mater. Trans. A 27A, 205 (1996).CrossRefGoogle Scholar
31.Liu, P.L., Xu, Z., and Shang, J.K., Metall. Mater. Trans. A (2000, in press).Google Scholar
32.Yao, D. and Shang, J.K., Metall. Mater. Trans. A 26A, 2677 (1995).CrossRefGoogle Scholar
33.Frear, D., Grivas, D., and Morris, J.W. Jr, J. Electron. Mater. 16, 181 (1987).CrossRefGoogle Scholar
34.Vianco, P.T., Hlava, P.F., and Kilgo, A.C., J. Electron. Mater. 23, 583 (1994).CrossRefGoogle Scholar
35.Vianco, P.T., Erickson, K.L., and Hopkins, P.L., J. Electron. Mater. 23, 721 (1994).Google Scholar
36.Frear, D.R. and Vianco, P.T., Metall. Mater. Trans. A 25A, 1509 (1994).CrossRefGoogle Scholar
37.Raeder, C.H., Felton, L.E., Tanzi, V.A., and Knorr, D.B., J. Electron. Mater. 23, 611 (1994).CrossRefGoogle Scholar
38.Liu, P.L. and Shang, J.K. (unpublished research).Google Scholar