Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T10:44:38.007Z Has data issue: false hasContentIssue false

Chemisorptive electron emission as a probe of plastic deformation in reactive metals

Published online by Cambridge University Press:  03 March 2011

J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
L.C. Jensen
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
R.G. Hoagland
Affiliation:
Mechanical and Materials Engineering Department, Washington State University, Pullman, Washington 99164-2920
Get access

Abstract

The surface area created during tensile deformation and fracture of the reactive metals Ti, Zr, Mg, and Al is probed by real-time measurements of chemisorptive electron emission (CSE) due to oxygen adsorption. CSE is sensitive to the number of fresh metal atoms exposed at the surface as a consequence of plastic deformation. At constant strain rate, Ti, Zr, and Mg all display exponential increases in CSE intensities during loading, reflecting exponential increases in surface area prior to fracture. In Ti and Zr, CSE begins at the onset of unstable necking. In contrast, CSE intensities from Al reflect a nearly constant rate of surface area production during deformation at constant strain rate. Calibration of the Ti CSE intensities per unit surface area allowed determination of the total surface area produced during deformation and fracture. Atomic force microscopy of the necked region in strained Ti samples shows dramatic increases in surface roughness, in near agreement with the CSE results. A model is presented to account for these observations. The utility of CSE measurements as a probe of deformation and ductile fracture is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sujak, B. and Gieroszyiiski, A., Acta Phys. Polon. 28, 249 (1968).Google Scholar
2Baxter, W. J., Fatigue Eng. Mater. Struc. 1, 343 (1979).CrossRefGoogle Scholar
3Baxter, W. J. and Rouze, S. R., J. Appl. Phys. 44, 4400 (1973).CrossRefGoogle Scholar
4Baxter, W. J., J. Appl. Phys. 45, 4692 (1974).CrossRefGoogle Scholar
5Pardee, W. J. and Buck, O., Mater. Eval., 97 (April 1977).Google Scholar
6McCarroll, B. M., J. Chem. Phys. 50, 4758 (1969).CrossRefGoogle Scholar
7Kasemo, B., Tornqvist, E., and Wallden, L., Mater. Sci. Eng. 42, 23 (1980).CrossRefGoogle Scholar
8Prince, R. H. and Persaud, R., Surf. Sci. 207, 207 (1988).CrossRefGoogle Scholar
9Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).CrossRefGoogle Scholar
10Loudiana, M. A., Bye, J., Dickinson, J. T., and Dickinson, D. A., Surf. Sci. 157, 459 (1985).CrossRefGoogle Scholar
11Krylova, I. V., Poverkhnost Fiz. Khim. Mekhan. 1, 5 (1988).Google Scholar
12Norskov, J.K., Newns, D. M., and Lundqvist, B. I., Surf. Sci. 80, 179 (1979).CrossRefGoogle Scholar
13Kasemo, B., Tornqvist, E., Norskov, J. K., and Lundqvist, B. I., Surf. Sci. 89, 554 (1979).CrossRefGoogle Scholar
14Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).CrossRefGoogle Scholar
15Cox, M. P., Foord, J. S., Lambert, R. M., and Prince, R. H., Surf. Sci. 129, 399 (1983).CrossRefGoogle Scholar
16Deblasi Bourdon, E. B. and Prince, R.H., Surf. Sci. 144, 591 (1984).CrossRefGoogle Scholar
17Dickinson, J. T., Donaldson, E. E., and Snyder, D. B., J. Vac. Sci. Technol. 18, 460 (1981), and references therein.CrossRefGoogle Scholar
18Gesell, T. F., Arakawa, E. T., and Callcott, T. A., Surf. Sci. 20, 174 (1970).CrossRefGoogle Scholar
19Nowotny, J. and Sloma, M., in Surface and Near-Surface Chemistry of Oxide Materials, edited by Nowotny, J. and Dufour, L-C. (Elsevier, Amsterdam, 1988), pp. 281343.Google Scholar
20Dai, Y. Z. and Chiang, F. P., Opt. Eng. 30, 1269 (1991).CrossRefGoogle Scholar
21Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley, New York, 1989), pp. 81105.Google Scholar