Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-26T16:37:30.864Z Has data issue: false hasContentIssue false

Characterization of the Aurivillius phases in the vicinity of the Bi5AgNb4O18 compound

Published online by Cambridge University Press:  03 March 2011

Xing Hu*
Affiliation:
Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Danilo Suvorov
Affiliation:
Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
*
a) Address all correspondence to this author. e-mail: huxingmse@yahoo.com.cn
Get access

Abstract

The Aurivillius phases in the vicinity of the Bi5AgNb4O18 compound were determined by means of solid-state reaction, x-ray diffraction, and scanning electron microscopy. The stoichiometric Aurivillius phase Bi5AgNb4O18 is compatible with Ag/Ag2O, BiAgNb2O7, and BiNbO4. Two Aurivillius-phase solid solutions were found for the A-site-deficient Bi5+x/3Ag1−xNb4O18 and the oxygen-deficient Bi5−zAgzNb3O15−z. The x value of the Bi5+x/3Ag1−xNb4O18 solid-solution limit is between 0.2 and 0.4. A single-phase non-stoichiometric compound was obtained for x = 0.2 in Bi5+x/3Ag1−xNb4O18 and z = 0.25 in Bi5−zAgzNb3O15−z. The dielectric (at 1 MHz), ferroelectric, and piezoelectric properties of the stoichiometric Aurivillius phase Bi5AgNb4O18 were as follows: TC= 772 °C, ϵr= 197 (room temperature), ϵmax = 830, tanδ ∼ 10−3(room temperature to 540 °C), Pr = 6μC/cm2, Ec = 52kV/cm, d33 = 11pC/N.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., and Jo, W.: Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682 (1999).CrossRefGoogle Scholar
2Damjanovic, D.: Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469 (1998).CrossRefGoogle Scholar
3Aurivillius, B.: Mixed bismuth oxides with layer lattices: I. The structure type of CaNb2Bi2O9. Ark. Kemi. 1, 463 (1949).Google Scholar
4Araujo, C.A., Cuchlaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).CrossRefGoogle Scholar
5Noguchi, T., Hase, T., and Miyasaka, Y.: Analysis of the dependence of ferroelectric properties of strontium bismuth tantalite (SBT) thin films on the composition and process temperature. Jpn. J. Appl. Phys. 35, 4900 (1996).CrossRefGoogle Scholar
6Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., and Asano, H.: Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl. Phys. Lett. 74(13), 1904 (1999).CrossRefGoogle Scholar
7Onodera, A., Kubo, T., Yoshio, K., Kojima, S., Yamashita, H., and Takama, T.: Crystal structure of high-temperature paraelectric phase in Bi-layered perovskite Sr0.85Bi2.1Ta2O9. Jpn. J. Appl. Phys. 39, 5711 (2000).CrossRefGoogle Scholar
8Hervoches, C.H., Irvine, J.T.S., and Lightfoot, P.: Two high-temperature paraelectric phases in Sr0.85Bi2.1Ta2O9. Phys. Rev. B 64, 100102 (2001).CrossRefGoogle Scholar
9Noguchi, Y., Miyayama, M., Oikawa, K., and Kamiyama, T.: Defect engineering for control of polarization properties in SrBi2Ta2O9. Jpn. J. Appl. Phys. Part 1 11B, 7062 (2002).CrossRefGoogle Scholar
10Wang, C., Fang, Q.F., and Zhu, Z.G.: Enhanced dielectric properties of low-temperature sintered SrBi2Nb2O9/Ag composites. Appl. Phys. Lett. 80(19), 3578 (2002).CrossRefGoogle Scholar
11Sih, B., Jung, A., and Ye, Z.G.: Effects of silver doping on ferroelectric SrBi2Ta2O9. J. Appl. Phys. 92(7), 3928 (2002).CrossRefGoogle Scholar
12Valant, M. and Suvorov, D.: Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: Conceptual study. J. Am. Ceram. Soc. 83(11), 2721 (2000).CrossRefGoogle Scholar
13Wong-Ng, W., Huang, Q., Cook, L.P., Levin, I., Kaduk, J.A., Mighell, A.D., and Suh, J.: Crystal chemistry and crystallography of the Aurivillius phase Bi5AgNb4O18. J. Solid State Chem. 177, 3359 (2004).CrossRefGoogle Scholar
14Borg, S., Svensson, G., and Bovin, J.O.: Structure study of Bi2.5Na0.5Ta2O9 and Bi2.5Nam−1.5NbmO3m+3 (m=2–4) by neutron powder diffraction and electron microscopy. J. Solid State Chem. 167, 86 (2002).CrossRefGoogle Scholar
15Hu, X., Valant, M., and Suvorov, D.: Aurivillius and pyrochlore phases in the Bi2O3-Ag2O-Nb2O5 system. 9th Conference & Exhibition of the European Ceramic Society, 2005, Abstract book, p. 156.Google Scholar
16Lisinska-Czekaj, A., Czekaj, D., Surowiak, Z., Hezuk, J., Plewa, J., Leyderman, A.V., Gagarina, E.S., Shuvaev, A.T., and Fesenko, E.G.: Synthesis and dielectric properties of Am−1Bi2BmO3m+1 ceramic ferroelectrics with m=1.5. J. Euro. Ceram. Soc. 24, 947 (2004).CrossRefGoogle Scholar
17Takenaka, T., Komura, K., and Sakata, K.: Possibility of new mixed bismuth layer-structured ferroelectrics. Jpn. J. Appl. Phys. 35, 5080 (1996).CrossRefGoogle Scholar
18Snedden, A., Charkin, D.O., Dolgikh, V.A., and Lightfoot, P.: Crystal structure of the mixed-layer Aurivillius phase Bi5TiNbWO15. J. Solid State Chem. 178, 180 (2005).CrossRefGoogle Scholar
19Yu, W.J., Kim, Y.I., Ha, D.H., Lee, J.H., Park, Y.K., Seong, S., and Hur, N.H.: A new manganese oxide with the Aurivillius structure: Bi2Sr2Nb2MnO12−δ. Solid State Commun. 111, 705 (1999).CrossRefGoogle Scholar
20Park, B.H., Hyun, S.J., Bu, S.D., Noh, T.W., Lee, J., Kim, H.D., Kim, T.H., and Jo, W.: Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74(13), 1907 (1999).CrossRefGoogle Scholar
21Suarez, D.Y., Reaney, I.M., and Lee, W.E.: Relations between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res. 16(11), 3139 (2001).CrossRefGoogle Scholar
22Aoyagi, R., Takeda, H., Okamura, S., and Shiosaki, T.: Synthesis and electrical properties of sodium bismuth niobate Na0.5Bi2.5Nb2O9. Mater. Res. Bull. 38, 25 (2003).CrossRefGoogle Scholar
23Matsushita, M., Aoyagi, R., Takeda, H., Okamura, S., and Shiosaki, T.: Piezoelectric properties of Sodium Bismuth Tantalate Na0.5Bi2.5Ta2O9 Dense ceramics. Jap. J. Appl. Phys. 43(10), 7164 (2004).CrossRefGoogle Scholar