Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-10T09:58:45.063Z Has data issue: false hasContentIssue false

Characterization of Porosity Over Many Length Scales: Application to Colloidal Gels

Published online by Cambridge University Press:  31 January 2011

Helen M. Kerch
Affiliation:
United States Department of Energy, Germantown, Maryland 20874
Gabrielle G. Long
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Susan Krueger
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Andrew J. Allen
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Rosario Gerhardt
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
Frederick Cosandey
Affiliation:
Rutgers University, Piscataway, New Jersey 08855
Get access

Abstract

Processing-microstructure relationships in a silica gel system, based on mixtures of colloidal sol and soluble potassium silicate, have been studied. Quantitative microstructural information regarding colloidal cluster sizes, size distributions, surface areas, and pore-size distribution from the nanopore range to the macropore range was determined via small-angle scattering and transmission electron microscopy. The colloid cluster size distribution varies systematically, with gels fabricated with the least colloidal fraction possessing the most polydisperse microstructure. It is shown that the porosity over the entire range can be tailored by selecting the appropriate starting chemistry; under the same pH conditions, the ratio of the two silicate ingredients controls the average size, the polydispersity of sizes, and the connectivity of the pores. A population of fine (2 nm) uniformly dispersed nanopores, which result from leaching, is responsible for large increases in surface area. The leaching process can be controlled by the surrounding macropore void size, which determines alkali transport. The product material consists of 85% large, open pores, with fine pores within the gel skeleton, making this gel an ideal candidate for controlled-porosity applications such as catalyst supports and magnetic composites.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fricke, J., J. Noncryst. Solids 147 and 148, 356 (1992).CrossRefGoogle Scholar
2.Gerhardt, R., Ceram. Trans. 68, 57 (1996).Google Scholar
3.Rabinovitch, E.M., Johnson, D.W. Jr, MacChesney, J.B., and Vogel, E.M., J. Am. Ceram. Soc. 66 (10), 683 (1983).CrossRefGoogle Scholar
4.Scherer, G.W. and Luong, J. C., J. Noncryst. Solids 63, 163 (1984).CrossRefGoogle Scholar
5.Shoup, R.D., Colloid and Interface Science (Academic Press, New York, 1976).Google Scholar
6.Shoup, R.D., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D. and Ulrich, D. R. (Wiley, New York, 1988), p. 347.Google Scholar
7.Cao, W., Gerhardt, R., and Wachtman, J. B. Jr, J. Am. Ceram. Soc. 71 (12), 1108 (1988).CrossRefGoogle Scholar
8.Shafer, M.W., Awschalom, D.D., Warnock, J., and Ruben, G., J. Appl. Phys. 61 (12), 5438 (1987).CrossRefGoogle Scholar
9.Kerch, H.M., Gerhardt, R. A., and Grazul, J. L., J. Am. Ceram. Soc. 73 (8), 2228 (1990).CrossRefGoogle Scholar
10.Long, G.G., Krueger, S., Jemian, P.R., Black, D.R., Burdette, H. E., Cline, J. P., and Gerhardt, R. A., J. Appl. Cryst. 23, 535 (1990).CrossRefGoogle Scholar
11.Long, G.G., Jemian, P.R., Weertman, J.R., Black, D.R., Burdette, H. E., and Spal, R., J. Appl. Cryst. 24, 30 (1991).CrossRefGoogle Scholar
12.Jemian, P. R. and Long, G. G., J. Appl. Crystallogr. 23, 430 (1990).CrossRefGoogle Scholar
13.Lake, J. A., Acta Crystallogr. 23, 191 (1967).CrossRefGoogle Scholar
14.Glinka, C. J., Rowe, J. M., and LaRock, J. G., J. Appl. Crystallogr. 19, 427 (1986).CrossRefGoogle Scholar
15.Hammouda, B., Krueger, S., and Glinka, C. J., J. Res. of NIST 98, 31 (1993).CrossRefGoogle Scholar
16.Porod, G., Kolloid Z. 124, 83 (1951).CrossRefGoogle Scholar
17.Weiss, R. J., Phys. Rev. 83, 379 (1951).CrossRefGoogle Scholar
18.Kostorz, G., in A Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1979), Vol. 15, p. 227.Google Scholar
19.Guinier, A. and Fournet, G., Small-Angle Scattering of X-rays (John Wiley, New York, 1955), p. 25.Google Scholar
20.Potten, J. A., Daniell, G. J., and Rainford, B.D., J. Appl. Crystallogr. 21, 663 (1988).CrossRefGoogle Scholar
21.Rühle, M., in Proc. Int. Conf. in Radiation-Induced Voids in Metals (U.S. Atomic Energy Commission, Washington, DC, 1972), p. 255.Google Scholar
22.Kerch, H. M., Cosandey, F., and Gerhardt, R. A., J. Non-Cryst. Solids 152, 18 (1993).CrossRefGoogle Scholar
23.Spence, J. C. H., in Experimental High-Resolution Electron Microscopy (Oxford Press, New York, 1988), p. 403.Google Scholar
24.Nakahara, S., J. Electrochem. Soc. 129, 201C (1982).CrossRefGoogle Scholar
25.Gregg, S. J. and Sing, K. S. W., in Adsorption, Surface Area and Porosity (Academic Press, New York, 1982).Google Scholar
26.Barrett, E.P., Joyner, L. G., and Halenda, P. P., J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
27.Washburn, E.W., Proc. Natl. Acad. Sci. 7, 115 (1921).CrossRefGoogle Scholar