Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T03:01:23.662Z Has data issue: false hasContentIssue false

Characterization of hydrofluoric acid treated Y–Ba–Cu–O oxides

Published online by Cambridge University Press:  31 January 2011

Q. X. Jia
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
W. A. Anderson
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
Get access

Abstract

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yan, M.F.Barns, R. L.O'bryan, H. M., Gallagher, P. K.Sherwood, R.C. and Jin, S.Appl. Phys. Lett. 51, 531 (1987).CrossRefGoogle Scholar
2Bams, R.L. and Laudise, R. A.Appl. Phys. Lett. 51, 1373 (1987).Google Scholar
3Mankiewich, P. M.Scofield, J. G.Skocpol, W. J.Howard, R. E.Dayem, A. H. and Good, E.Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
4Farrell, D.E.DeGuier, M. R.Chandrasekhar, B.S.Alterovitz, S.A.Aron, P.R. and Gaaly, R.L.Phys. Rev. B35, 8797 (1987).Google Scholar
5Garland, M.M.J. Mater. Res. 3, 830 (1988).CrossRefGoogle Scholar
6Chang, C.A.Appl. Phys. Lett. 53, 1113 (1988).Google Scholar
7Kishida, S.Tokutaka, H.Nishimori, K.Ishihara, N.Watanabe, Y.Noishiki, Y. and Yamamoto, T.Jpn. J. Appl. Phys. 27, L1616 (1988).Google Scholar
8Chang, C. A. and Tsai, J. A.Appl. Phys. Lett. 53, 1976 (1988).Google Scholar
9I. Shih and Qiu, C. X.Appl. Phys. Lett. 52, 1523 (1988).CrossRefGoogle Scholar
10Hill, D.M.Meyer, H.M. III , Weaver, J. H. and Nelson, D.L.Appl. Phys. Lett. 53, 1657 (1988).CrossRefGoogle Scholar
11Jia, Q. X. and Anderson, W. A.presented at MRS 1988 Fall Meeting, Nov. 28, 1988, Boston, MA.Google Scholar
12Bansal, N.P. and Sandkuhl, A. L.Appl. Phys. Lett. 52, 323 (1988).Google Scholar
13Zhuang, D. X., Xiao, M.S.Zhang, Z.Q.Yue, S.B.Zhao, H. S. and Shang, S.X.Solid State Commun. 65, 339 (1988).Google Scholar
14Davies, P. K.Stuart, J. A.White, D.Lee, C.Chaikin, P. M.Naughton, M. J.Yu, R. C. and Ehrenkaufer, R. L.Solid State Commun. 64, 1441 (1987).Google Scholar
15Hazen, R. M.Finger, L. W.Tzeng, R.J.Prewitt, C.T.Ross, N. L.Mao, H. K.Hadidiacos, C. G.Hor, P. H.Meng, R. L. and Chu, C. W.Phys. Rev. B35, 7238 (1987).Google Scholar
16Stoffel, N. G.Tarascon, J. M.Chang, Y.Onellion, M.Niles, D. W. and Margaritondo, G.Phys. Rev. B36, 3986 (1987).Google Scholar
17Tarascon, J. M.McKinnon, W. R.Greene, L. H.Hull, G. W. and Vogel, E. M.Phys. Rev. B36, 226 (1987).Google Scholar
18Vasquez, R.P.Hunt, B.D. and Foote, M. C.Appl. Phys. Lett. 54, 2373 (1989).Google Scholar