Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-18T15:04:02.008Z Has data issue: false hasContentIssue false

Characterization of bond formation in SiC and Si3N4 implanted with Ti, Fe, and Co

Published online by Cambridge University Press:  31 January 2011

Didier Zanghi
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE), Centre Universitaire Paris-Sud, Bât. 209A, BP34, 91898 Orsay Cedex, France
Agnès Traverse*
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE), Centre Universitaire Paris-Sud, Bât. 209A, BP34, 91898 Orsay Cedex, France
Sébastien Gautrot
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay Cedex, France
Odile Kaïtasov
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay Cedex, France
*
a)Address all correspondence to this author. e-mail: traverse@lure.u-psud.fr
Get access

Abstract

Ti, Fe, and Co ions were implanted in two ceramics, SiC and Si3N4, to reach concentrations on the order of 10% over a depth of about 50–60 nm. X-ray absorption spectroscopy was performed at the K edge of the implanted ions to identify their local environment at the end of the implantation process. Ti was found to form Ti–C and Ti–N bonds whereas Co and Fe precipitated and formed clusters in Si3N4. CoSi was detected in SiC whereas, in the same matrix, Fe clusters coexist with FeSi. A coherent interpretation of these results is given in terms of the heat of reaction for all possible systems. We also successfully interpret in the same way some results found in literature in the case of implanted oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Muller, A. and Bednorz, J.G., La Recherche 19 (195), 52 (1988).Google Scholar
2.Norton, M.G., J. Adhes. Sci. Technol. 6, 635 (1992).CrossRefGoogle Scholar
3.Townsend, P.D., Vacuum 51, 301 (1998);CrossRefGoogle Scholar
Kostritskii, S.M. and Moretti, P., Appl. Phys. B68, 801 (1999).CrossRefGoogle Scholar
4.Ossi, P.M., Z. Phys. B93, 243 (1994) and references therein.CrossRefGoogle Scholar
5.McHargue, C.J., Mater. Sci. Eng. A253, 94 (1998).CrossRefGoogle Scholar
6.Treilleux, M. and Chassagne, G., J. Phys. Lett. 40, L161 (1979).CrossRefGoogle Scholar
7.Perez, A., Treilleux, M., Thévenard, P., Abouchacra, G., Marest, G., Fritsch, L., and Serughetti, J., in Metastable Materials Formation by Ion Implantation, edited by Picraux, S.T. and Choyke, W.J. (Elsevier, Amsterdam, The Netherlands, 1982).Google Scholar
8.Perez, A., Meaudre, R., Thévenard, P., and Sibut, P., Induced Defects in Insulators, Editions de Physique, Les Ulis, France 1984, p. 171.Google Scholar
9.Perez, A., Treilleux, M., Fritsch, L., and Marest, G., Nucl. Instrum. Methods 182/183, 747 (1981).CrossRefGoogle Scholar
10.McHargue, C.J., White, C.W., Sklad, P.S., Perez, A., and Marest, G., J. Mater. Res. 6, 2145 (1991).CrossRefGoogle Scholar
11.Borowski, M. and Traverse, A., Nucl. Instrum. Methods B114, 269 (1996).CrossRefGoogle Scholar
12.Borowski, M., Traverse, A., and Eymery, J.P., Nucl. Instrum. Methods B122, 247 (1997).CrossRefGoogle Scholar
13.Traverse, A., Hyperfine Interact. 110, 159 (1997).CrossRefGoogle Scholar
14.Smithells Metals Reference Book, 6th ed., edited by Brandes, E.A. (Butterworths, London, United Kingdom, 1983).Google Scholar
15.Zinkle, S.J., Nucl. Instrum. Methods B91, 234 (1994).CrossRefGoogle Scholar
16.Mullica, D.F., Perkins, H.O., Grossie, D.A., Boatner, L.A., and Sales, B.C., J. Solid State Chem. 62, 371 (1986).CrossRefGoogle Scholar
17.Bolse, W., Conrad, J., Harbsmeier, F., Borowski, M., and Rödle, T., Mater. Sci. Forum 248–249, 319 (1997).CrossRefGoogle Scholar
18.Borowski, M., Bolse, W., and Conrad, J., J. Phys. IV France 7, C2711 (1997).Google Scholar
19.Girardeau, T., Mimault, J., Jaouen, M., Chartier, P., and Tourillon, G., Phys. Rev. B46, 7144 (1992).CrossRefGoogle Scholar
20.Chaumont, J., Lalu, F., Salomé, M., and Lamoise, A.M., Nucl. Instrum. Methods 189, 193 (1981).CrossRefGoogle Scholar
21.Bernas, H., Chaumont, J., Cottereau, E., Meunier, R., Traverse, A., Clerc, C., Kaitasov, O., Lalu, F., Le Du, D., Moroy, G., and Salomé, M., Nucl. Instrum. Methods B62, 416 (1992).CrossRefGoogle Scholar
22.Doolittle, L.R., Nucl. Instrum. Methods B15, 227 (1986).CrossRefGoogle Scholar
23.Mimault, J., Faix, J.J., Girardeau, T., Jaouen, M., and Tourillon, G., Meas. Sci. Technol. 5, 482 (1994).CrossRefGoogle Scholar
24.Michalowizc, A., Logiciels pour la Chimie, 102, Ed. Société Française de Chimie, Paris (1991).Google Scholar
25.Rehr, J.J., Mustre de Leon, J., Zabinski, S.I., and Albers, R.C.. J. Am. Chem. Soc. 113, 5135 (1991).CrossRefGoogle Scholar
26.Chu, Wei-Kan, Mayer, J.W. and Nicolet, M.A.. Backscattering Spectrometry (Academic Press, London, United Kingdom, 1978).CrossRefGoogle Scholar
27.Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1986), Vols. I and II.Google Scholar
28.Borowski, M. and Traverse, A., J. Mater. Res. 10, 3136 (1995).CrossRefGoogle Scholar
29.Treilleux, Michel, Doctoral Thesis, Université Claude Bernard, Lyon I, France (1982).Google Scholar
30.Hung, L.S. and Mayer, J.W., Nucl. Instrum. Methods B7/8, 676 (1985).CrossRefGoogle Scholar
31.Traverse, A., Le Boité, M.G., and Martin, G., Europhysics. Lett. 8, 633 (1989).CrossRefGoogle Scholar
32.Desimoni, J. and Traverse, A., Phys. Rev. B48, 13266 (1993).CrossRefGoogle Scholar
33.Cheng, Y.T., Mater. Sci. Rep. 5, 45 (1990).CrossRefGoogle Scholar