Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T13:26:41.315Z Has data issue: false hasContentIssue false

Characteristics of spin-on ferroelectric SrBi2Ta2O9 thin film capacitors for ferroelectric random access memory applications

Published online by Cambridge University Press:  31 January 2011

Peir Y. Chu
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Robert E. Jones Jr.
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Peter Zurcher
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Deborah J. Taylor
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Bo Jiang
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Sherry J. Gillespie
Affiliation:
Advanced Materials Group, Materials Research and Strategic Technologies, Motorola, Austin, Texas 78721
Y. T. Lii
Affiliation:
Advanced Products Research and Development Laboratory, Motorola, Austin, Texas 78721
Mike Kottke
Affiliation:
Materials Characterization Laboratories, Materials Research and Strategic Technologies, Motorola, Mesa, Arizona 85202
Peter Fejes
Affiliation:
Materials Characterization Laboratories, Materials Research and Strategic Technologies, Motorola, Mesa, Arizona 85202
Wei Chen
Affiliation:
Materials Characterization Laboratories, Materials Research and Strategic Technologies, Motorola, Mesa, Arizona 85202
Get access

Abstract

We report on the properties and characterization of SrBi2Ta2O9 (SBT, or Y − 1) thin film capacitors for ferroelectric random access memory (FERAM) applications. The films were prepared by spin-coating from carboxylate precursors. The remanent polarization (Pr) was 5−6 μC/cm2 and the coercive field was ∼55 kV/cm. Excellent fatigue endurance was observed up to 1011 cycles. Auger analysis indicates bismuth diffusion through the Pt electrode after capacitor anneal which might require excess Bi in the precursor solution for stoichiometry control. No detectable amount of α emission was found from SBT films, which reduces the possibility of soft error when used in the memory devices.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Moazzami, R., Maniar, P. D., Jones, R. E. Jr., Campbell, A. C., and Mogab, C. J., VLSI Tech. Symp. Digest, 87 (1993).Google Scholar
3.Larsen, P. K., Spierings, G. A. C. M., Cuppens, R., and Dormans, G.J.M., Microelectron. Eng. 22, 53 (1993).CrossRefGoogle Scholar
4.Paz de Araujo, C. A., Cuchiaro, J.D., Scott, M.C., and McMillan, L. D., International Patent Publication No. WO93/12542 (June 24, 1993).Google Scholar
5.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66 (2), 221 (1995).CrossRefGoogle Scholar
6.Sumi, T., Moriwaki, N., Nakane, G., Nakakuma, T., Judai, Y., Uemoto, Y., Nagano, Y., Hayashi, S., Azuma, M., Otsuki, T., Kano, G., Cuchiaro, J. D., Scott, M.C., McMillan, L.D., and Paz de Araujo, C. A., Integrated Ferroelectrics 6, 1 (1995).CrossRefGoogle Scholar
7.Jones, R. E. Jr., Zurcher, P., Jiang, B., Witowski, J. Z., Lii, Y. T., Chu, P. Y., Taylor, D. J., and Gillespie, S. J., Integrated Ferro-electrics (1996, in press).Google Scholar
8.Aurivillius, B., Arkiv Kemi, 1, 463, 499 (1949).Google Scholar
9.Smolenskii, G. A., Isupov, V.A., and Agranovskaya, A. I., Sov. Phys. Solid State 3, 651 (1961).Google Scholar
10.Smolenskii, G. A., Isupov, V.A., and Agranovskaya, A. I., Sov. Phys. Solid State 1, 149 (1959).Google Scholar
11.Cummins, S. E. and Cross, L.E., J. Appl. Phys. 39 (5), 2268 (1968).CrossRefGoogle Scholar
12.Jaffe, B., Cook, W. R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
13.Subbarao, E. C., J. Phys. Chem. Solids 23, 665 (1962).CrossRefGoogle Scholar
14.Chu, P. Y., Campion, I., and Buchanan, R. C., J. Mater. Res. 8, 261 (1993).CrossRefGoogle Scholar
15.Paz de Araujo, C. A., Cuchiaro, J.D., Scott, M.C., and McMillan, L. D., International Patent Publication No. WO 93/12538, June 1993.Google Scholar
16.Chu, P. Y. and Buchanan, R.C., J. Mater. Res. 6, 1736 (1991).CrossRefGoogle Scholar
17.Jones, R. E. Jr., Zurcher, P., Chu, P. Y., Taylor, D. J., Lii, Y. T., Jiang, B., Maniar, P. D., and Gillespie, S. J., Microelectron. Eng. (in press).Google Scholar