Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-26T17:54:15.388Z Has data issue: false hasContentIssue false

Calorimetric and high-resolution transmission electron microscopy study of nanocrystallization in zirconia gel

Published online by Cambridge University Press:  31 January 2011

Jiří Málek
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305, Japan
Takefumi Mitsuhashi
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305, Japan
Julio Ramírez-Castellanos
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305, Japan
Yoshio Matsui
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

The formation of metastable tetragonal zirconia nanophase by thermal treatment of a zirconia gel derived from zirconyl chloride has been studied by high-resolution transmission electron microscopy (HRTEM) and differential scanning calorimetry (DSC). HRTEM observations revealed that a fully crystallized sample consists of nanocrystals, around 13 nm in size. This nanocrystalline t-ZrO2 has practically the same crystal structure as that of the high-temperature tetragonal zirconia phase. The nonisothermal crystallization rate is very fast in as-prepared zirconia gel. DSC data at various heating rates can be described by a two-parameter model which predicts the crystallization kinetics in isothermal conditions very well. The Johnson–Mehl–Avrami (JMA) model can be used, however, in partially crystalline samples (crystallinity >30%) where the rate of crystallization process is considerably slower. The kinetic exponent of the JMA model (m = 1.0 ± 0.1) then corresponds to linear dependence of the crystallization rate as a function of the fraction crystallized.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Subbarao, E.C., in Advances in Ceramics, Vol. 3, Science and Technol. of Zirconia, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), p 1.Google Scholar
2.Denkewicz, R. P. Jr, TenHusein, K. S., and Adair, J. H., J. Mater. Res. 5, 2698 (1990).CrossRefGoogle Scholar
3.Blesa, M. A., Maroto, A. J. G., Passaggio, S. I., Figliolia, N. E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
4.Gimblett, G., Rahman, A. A., and Sing, K. S. W., J. Chem. Tech. Biotech. 30, 51 (1980).CrossRefGoogle Scholar
5.Colomban, Ph. and Bruneton, E., J. Non-Cryst. Solids 147&148, 201 (1992).CrossRefGoogle Scholar
6.Garvie, R. C., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
7.Murase, Y. and Kato, E., J. Am. Ceram. Soc. 66, 196 (1983).CrossRefGoogle Scholar
8.Srinivasan, R., Rice, L., and Davis, B. H., J. Am. Ceram. Soc. 73, 3528 (1990).CrossRefGoogle Scholar
9.Clearfield, A., J. Mater. Res. 5, 161 (1990).CrossRefGoogle Scholar
10.Mitsuhashi, T., Ichihara, M., and Tatsuke, U., J. Am. Ceram. Soc. 57, 97 (1974).CrossRefGoogle Scholar
11.Livage, J., Doi, K., and Maziéres, C., J. Am. Ceram. Soc. 51, 349 (1968).CrossRefGoogle Scholar
12.Torralvo, M. J., Alario, M. A., and Soria, J., J. Catal. 86, 473 (1984).CrossRefGoogle Scholar
13.Collins, D. E., Rogers, K. A., and Bowman, K. J., J. Euro. Ceram. Soc. 15, 1119 (1995).CrossRefGoogle Scholar
14.Zhan, Z. and Zeng, H. C., J. Mater. Res. 13, 2174 (1998).CrossRefGoogle Scholar
15.Teufer, G., Acta Crystallogr. 15, 1187 (1962).CrossRefGoogle Scholar
16.Arone, A., Pernice, P., and Marotta, A., J. Mater. Sci. Lett. 10, 1136 (1991).CrossRefGoogle Scholar
17.Ramanathan, S., Mulraleedharan, R. V., Roy, S. K., and Nayar, P. K. K., J. Am. Ceram. Soc. 78, 429 (1995).CrossRefGoogle Scholar
18.Ramanathan, S., Soni, N. C., and Prasad, R., J. Mater. Sci. Lett. 12, 122 (1993).CrossRefGoogle Scholar
19.Sesták, J., Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis (Elsevier, Amsterdam, 1984).Google Scholar
20.Volmer, M. and Weber, A., Z. Phys. Chem. 119, 227 (1926).Google Scholar
21.Johnson, W. A. and Mehl, R. F., Trans. Am. Inst. Min. (Metall.) Engs. 135, 416 (1939).Google Scholar
22.Avrami, M., J. Phys. Chem. 7, 1103 (1939).CrossRefGoogle Scholar
23.Avrami, M., J. Phys. Chem. 8, 212 (1940).CrossRefGoogle Scholar
24.Avrami, M., J. Phys. Chem. 9, 177 (1941).CrossRefGoogle Scholar
25.Kolmogorov, A. N., Izvestia Akad. Nauk USSR, Ser. Math. 1, 355 (1937).Google Scholar
26.Erofeev, B. V., Dokl. Acad. Sci. USSR 52, 511 (1946).Google Scholar
27.Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, New York, 1975).Google Scholar
28.Henderson, D. W., J. Therm. Anal. 15, 325 (1979).CrossRefGoogle Scholar
29.Henderson, D. W., J. Non-Cryst. Solids 30, 301 (1979).CrossRefGoogle Scholar
30.DeBruijn, T. J. W., DeJong, W. A., and van den Berg, P.J., Thermochim. Acta 45, 315 (1981).CrossRefGoogle Scholar
31.Shepilov, M. P. and Baik, D. S., J. Non-Cryst. Solids 171, 141 (1994).CrossRefGoogle Scholar
32.Málek, J., Thermochim. Acta 267, 61 (1995).CrossRefGoogle Scholar
33.Málek, J., Thermochim. Acta 200, 257 (1992).CrossRefGoogle Scholar
34.Málek, J., Criado, J. M., Šesták, J., and Militký, J., Thermochim. Acta 153, 429 (1989).CrossRefGoogle Scholar
35.Šatava, V., Thermochim. Acta 2, 423 (1971).CrossRefGoogle Scholar
36.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures (John Wiley & Sons, New York, 1954), Chap. 9.Google Scholar
37.Katz, G., J. Am. Ceram. Soc. 54, 531 (1971).CrossRefGoogle Scholar
38.Málek, J., Beneš, L., and Mitsuhashi, T., Powder Diffraction 12, 96 (1997).CrossRefGoogle Scholar
39.Igava, N., Ishii, Y., Nagasaki, T., Morii, Y., Funahashi, S., and Ohno, H., J. Am. Ceram. Soc. 76, 2673 (1993).Google Scholar
40.Brown, M.E., Dollimore, D., and Galwey, A.K., Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1980), Vol. 22.Google Scholar