Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T17:15:14.601Z Has data issue: false hasContentIssue false

Bioprosthetic heart valves’ structural integrity improvement through exogenous amino donor treatments

Published online by Cambridge University Press:  05 July 2018

Yang Lei*
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Wanyu Jin
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Rifang Luo
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Gaocan Li
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Gaoyang Guo
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Yunbing Wang*
Affiliation:
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
*
a)Address all correspondence to these authors. e-mail: leiyang@scu.edu.cn
Get access

Abstract

Valvular heart diseases lead to over 300,000 heart valve replacements worldwide each year. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde (GLUT) crosslinked porcine or bovine pericardium, are often used. However, valve failure can occur within 12–15 years due to progressive degradation and/or calcification. Being innovated by previous amino reagent studies used for GLUT detoxification and carbodiimide [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC] chemistry, in this study, we developed a new fabrication method that utilizes exogenous amino donor arginine or lysine carbodiimide combined treatments to better stabilize the extracellular matrix of porcine pericardium. The carboxyl group density, amine content, differential scanning calorimetry, collagenase and elastase degradation, calcification by rat subdermal implantation, cytotoxicity, and platelet adhesion were characterized. We demonstrated that exogenous amino donor carbodiimide combined treatment for pericardiums had better resistance to elastase degradation (1.63 ± 0.11% and 1.44 ± 0.24% in arginine or lysine versus 3.68 ± 0.16% and 3.04 ± 0.11% in GLUT and GLUT/EDC control) and calcification (0.624 ± 0.193 and 0.637 ± 0.213 Ca µg/mg tissue in arginine or lysine versus 1.610 ± 0.124 and 1.512 ± 0.075 Ca µg/mg tissue in GLUT and GLUT/EDC control). This new strategy combined arginine or lysine and carbodiimide crosslinking would be a promising method to produce more robust BHVs with better structural stability and anticalcification property.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Manji, R.A., Menkis, A.H., Ekser, B., and Cooper, D.K.: Porcine bioprosthetic heart valves: The next generation. Am. Heart J. 164, 177 (2012).CrossRefGoogle ScholarPubMed
Rapoport, H.S., Connolly, J.M., Fulmer, J., Dai, N., Murti, B.H., Gorman, R.C., Gorman, J.H., Alferiev, I., and Levy, R.J.: Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials 28, 690 (2007).CrossRefGoogle ScholarPubMed
Hedayat, M., Asgharzadeh, H., and Borazjani, I.: Platelet activation of mechanical versus bioprosthetic heart valves during systole. J. Biomech. 56, 111 (2017).CrossRefGoogle ScholarPubMed
Human, P. and Zilla, P.: The possible role of immune responses in bioprosthetic heart valve failure. J. Heart Valve Dis. 10, 460 (2001).Google ScholarPubMed
Zilla, P., Brink, J., Human, P., and Bezuidenhout, D.: Prosthetic heart valves: Catering for the few. Biomaterials 29, 385 (2008).CrossRefGoogle ScholarPubMed
Vyavahare, N., Ogle, M., Schoen, F.J., Zand, R., Gloeckner, D.C., Sacks, M., and Levy, R.J.: Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46, 44 (1999).3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Sacks, M.S. and Schoen, F.J.: Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res., Part A 62, 359 (2002).CrossRefGoogle ScholarPubMed
Levy, R.J., Vyavahare, N.M., Ashworth, P., Bianco, R., and Schoen, F.J.: Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: Background, mechanisms, and synergism. J. Heart Valve Dis. 12, 216 (2003).Google ScholarPubMed
Paule, W.J., Bernick, S., Strates, B., and Nimni, M.E.: Calcification of implanted vascular tissues associated with elastin in an experimental animal model. J. Biomed. Mater. Res. 26, 1169 (1992).CrossRefGoogle Scholar
Anwar, R.A.: Elastin: A brief review. Biochem. Educ. 18, 162 (1990).CrossRefGoogle Scholar
Tripi, D.R. and Vyavahare, N.R.: Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J. Biomater. Appl. 28, 757 (2014).CrossRefGoogle ScholarPubMed
Bowes, J.H. and Kenten, R.H.: Some observations on the amino acid distribution of collagen, elastin and reticular tissue from different sources. Biochem. J. 45, 281 (1949).CrossRefGoogle ScholarPubMed
Zilla, P., Fullard, L., Trescony, P., Meinhart, J., Bezuidenhout, D., Gorlitzer, M., Human, P., and Von, O.U.: Glutaraldehyde detoxification of aortic wall tissue: A promising perspective for emerging bioprosthetic valve concepts. J. Heart Valve Dis. 6, 510 (1997).Google ScholarPubMed
Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., and Human, P.: Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. J. Biomed. Mater. Res., Part A 56, 56 (2001).3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Grimm, M., Grabenwöger, M., Eybl, E., Moritz, A., Böck, P., Müller, M.M., and Wolner, E.: Improved biocompatibility of bioprosthetic heart valves by L-glutamic acid treatment. J. Card. Surg. 7, 58 (1992).CrossRefGoogle ScholarPubMed
Jee, K.S., Kim, Y.S., Park, K.D., and Kim, Y.H.: A novel chemical modification of bioprosthetic tissues using L-arginine. Biomaterials 24, 3409 (2003).CrossRefGoogle ScholarPubMed
Girardot, J.M. and Girardot, M.N.: Amide cross-linking: An alternative to glutaraldehyde fixation. J. Heart Valve Dis. 5, 518 (1996).Google ScholarPubMed
Dewanjee, M.K.: Treatment of collagenous tissue with glutaraldehyde and aminodiphosphonate calcification inhibitor. US Patent US4553974A (1985).Google Scholar
Tam, H., Zhang, W., Feaver, K.R., Parchment, N., Sacks, M.S., and Vyavahare, N.: A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials 66, 83 (2015).CrossRefGoogle ScholarPubMed
Chen, S., Li, X., Yang, Z., Zhou, S., Luo, R., Maitz, M.F., Zhao, Y., Wang, J., Xiong, K., and Huang, N.: A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids Surf., B 113, 125 (2014).CrossRefGoogle ScholarPubMed
Chan, J.C., Burugapalli, K., Naik, H., Kelly, J.L., and Pandit, A.: Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer. Biomacromolecules 9, 528 (2008).CrossRefGoogle ScholarPubMed
Weng, K.L. and Khor, E.: Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Biomaterials 16, 251 (1995).Google Scholar
Leong, J., Munnelly, A., Liberio, B., Cochrane, L., and Vyavahare, N.: Neomycin and carbodiimide crosslinking as an alternative to glutaraldehyde for enhanced durability of bioprosthetic heart valves. J. Biomater. Appl. 27, 948 (2013).CrossRefGoogle ScholarPubMed
Jiang, B.P.D., Suen, R., Wertheim, J.M.P.D., and Ameer, G.S.D.: Targeting heparin to collagen within extracellular matrix significantly reduces thrombogenicity and improves endothelialization of decellularized tissues. Biomacromolecules 17, 3940 (2016).CrossRefGoogle ScholarPubMed
Tripi, D.R. and Vyavahare, N.R.: Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J. Biomater. Appl. 28, 757 (2014).CrossRefGoogle ScholarPubMed
Tam, H., Zhang, W., Infante, D., Parchment, N., Sacks, M., and Vyavahare, N.: Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J. Cardiovasc. Transl. Res. 10, 1 (2017).CrossRefGoogle ScholarPubMed
Nimni, M.E., Cheung, D., Strates, B., Kodama, M., and Sheikh, K.: Chemically modified collagen: A natural biomaterial for tissue replacement. J. Biomed. Mater. Res., Part A 21, 741 (1987).CrossRefGoogle ScholarPubMed
Tam, H., Zhang, W., Feaver, K.R., Parchment, N., Sacks, M.S., and Vyavahare, N.: A novel crosslinking method for improved tear resistance andbiocompatibility of tissue based biomaterials. Biomaterials 66, 83 (2015).CrossRefGoogle ScholarPubMed
Isenburg, J.C., Simionescu, D.T., and Vyavahare, N.R.: Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials 25, 3293 (2004).CrossRefGoogle ScholarPubMed
Luck, G., Liao, H., Murray, N.J., Grimmer, H.R., Warminski, E.E., Williamson, M.P., Lilley, T.H., and Haslam, E.: Polyphenols, astringency and proline-rich proteins. Phytochemistry 37, 357 (1994).CrossRefGoogle ScholarPubMed
Grabarek, Z. and Gergely, J.: Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131 (1990).CrossRefGoogle ScholarPubMed
Ma, B., Wang, X., Wu, C., and Chang, J.: Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regener. Biomater. 1, 81 (2014).CrossRefGoogle ScholarPubMed
Caballero, A., Sulejmani, F., Martin, C., Pham, T., and Sun, W.: Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. J. Mech. Behav. Biomed. Mater. 75, 486 (2017).CrossRefGoogle ScholarPubMed