Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T14:28:36.144Z Has data issue: false hasContentIssue false

Advanced materials for flexible electrochemical energy storage devices

Published online by Cambridge University Press:  26 July 2018

Linheng He*
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Kechun Wen
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Zuoxiang Zhang
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Luhan Ye
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Weiqiang Lv
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Jipeng Fei
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Shangqun Zhang
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
Weidong He*
Affiliation:
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: weidong.he@uestc.edu.cn
Get access

Abstract

Flexibility is a key parameter of device mechanical robustness. The most profound challenge for the realization of flexible electronics is associated with the relatively low flexibility of power sources. In this article, two kinds of energy applications, which have gained increasing attention in the field of flexibility in recent years, are introduced: the lithium-ion batteries and the supercapacitors. We overview the latest progresses in flexible materials and manufacturing technology. The performances of the energy devices based on flexible materials are introduced. The advantages and disadvantages of different manufacturing processes are discussed systematically. We then focus on current technical difficulties and future prospects of research in flexibility.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Zhou, G., Li, F., and Cheng, H.M.: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307 (2014).CrossRefGoogle Scholar
Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., and Shen, G.: Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 26, 4763 (2014).CrossRefGoogle ScholarPubMed
Wilson, J.: High time for wearable technology as apple watch is finally unveiled. Eng. Technol. 10, 20 (2015).CrossRefGoogle Scholar
Yu, X.Y., Yu, L., and Lou, X.W.D.: Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6, 1501333 (2016).CrossRefGoogle Scholar
Li, W., Li, M., Yang, Z., Xu, J., Zhong, X., Wang, J., and Gu, L.: Carbon-coated germanium nanowires on carbon nanofibers as self-supported electrodes for flexible lithium-ion batteries. Small 11, 2762 (2015).CrossRefGoogle ScholarPubMed
He, J., Chen, Y., Lv, W., Wen, K., Li, P., Wang, Z., Zhang, W., Qin, W., and He, W.: Three-dimensional hierarchical graphene-CNT@Se: A highly efficient freestanding cathode for Li–Se batteries. ACS Energy Lett. 1, 16 (2016).CrossRefGoogle Scholar
Wang, Z., Liu, M., Wei, G., Han, P., Zhao, X., Liu, J., and Zhang, J.: Hierarchical self-supported C@TiO2–MoS2 core–shell nanofiber mats as flexible anode for advanced flithium ion batteries. Appl. Surf. Sci. 423, 375 (2017).CrossRefGoogle Scholar
Chao, Y., Jalili, R., Ge, Y., Wang, C., Zheng, T., Shu, K., and Wallace, G.G.: Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017).CrossRefGoogle Scholar
Islam, M.M., Subramaniyam, C.M., Akhter, T., Faisal, S.N., Minett, A.I., Liu, H.K., and Dou, S.X.: Three dimensional cellular architecture of sulfur doped graphene: Self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J. Mater. Chem. A 5, 5290 (2017).CrossRefGoogle Scholar
Joe, D.J., Kim, S., Park, J.H., Park, D.Y., Lee, H.E., Im, T.H., and Lee, K.J.: Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017).CrossRefGoogle ScholarPubMed
Wang, Y., Xiao, N., Wang, Z., Tang, Y., Li, H., Yu, M., and Qiu, J.: Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries. Carbon 135, 187 (2018).CrossRefGoogle Scholar
Jiang, T., Bu, F., Feng, X., Shakir, I., Hao, G., and Xu, Y.: Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140 (2017).CrossRefGoogle ScholarPubMed
Li, G., Wang, X., Seo, M.H., Li, M., Ma, L., Yuan, Y., and Chen, Z.: Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018).CrossRefGoogle ScholarPubMed
Wu, Q., Zhao, R., Zhang, X., Li, W., Xu, R., Diao, G., and Chen, M.: Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J. Power Sources 359, 7 (2017).CrossRefGoogle Scholar
Deng, Z., Jiang, H., Hu, Y., Liu, Y., Zhang, L., Liu, H., and Li, C.: 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 29, 1603020 (2017).CrossRefGoogle Scholar
Amin, K., Meng, Q., Ahmad, A., Cheng, M., Zhang, M., Mao, L., and Wei, Z.: A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 30, 1703868 (2018).CrossRefGoogle ScholarPubMed
Zhang, H., Zhou, M.Y., Lin, C.E., and Zhu, B.K.: Progress in polymeric separators for lithium ion batteries. RSC Adv. 5, 89848 (2015).CrossRefGoogle Scholar
Yang, L., Wang, Z., Feng, Y., Tan, R., Zuo, Y., Gao, R., and Pan, F.: Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–Electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7, 1701437 (2017).CrossRefGoogle Scholar
Zhang, J., Ma, C., Xia, Q., Liu, J., Ding, Z., Xu, M., and Wei, W.: Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J. Membr. Sci. 497, 259 (2016).CrossRefGoogle Scholar
Xie, H., Liao, Y., Sun, P., Chen, T., Rao, M., and Li, W.: Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim. Acta 127, 327 (2014).CrossRefGoogle Scholar
Kim, S.H., Choi, K.H., Cho, S.J., Yoo, J., Lee, S.S., and Lee, S.Y.: Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321330 (2018).CrossRefGoogle Scholar
Shi, C., Zhu, J., Shen, X., Chen, F., Ning, F., Zhang, H., and Zhao, J.: Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv. 8, 4072 (2018).CrossRefGoogle Scholar
Manthiram, A., Yu, X., and Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).CrossRefGoogle Scholar
Faraji, S. and Ani, F.N.: The development supercapacitor from activated carbon by electroless plating—A review. Renewable Sustainable Energy Rev. 42, 823 (2015).CrossRefGoogle Scholar
Li, X., Tao, J., Guo, W., Zhang, X., Luo, J., Chen, M., and Pan, C.: A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. J. Mater. Chem. A 3, 22663 (2015).CrossRefGoogle Scholar
Gao, G., Wu, H.B., Ding, S., Liu, L.M., and Lou, X.W.D.: Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804 (2015).CrossRefGoogle ScholarPubMed
Lekakou, C., Sorniotti, A., Lei, C., Markoulidis, F., Wilson, P.C., Santucci, A., and Khalil, S.: AUTOSUPERCAP: Development of high energy and high power density supercapacitor cells. In Electric Vehicle Batteries: Moving from Research Towards Innovation (Springer, Cham, 2015); p. 33.Google Scholar
Dai, K.R., Wang, X.F., Lv, W.S., and You, Z.: Study on a planar interdigitated MEMS supercapacitor using modeling and simulation method. Key Eng. Mater. 645, 513 (2015).CrossRefGoogle Scholar
Ramadoss, A., Yoon, K.Y., Kwak, M.J., Kim, S.I., Ryu, S.T., and Jang, J.H.: Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. J. Power Sources 337, 159 (2017).CrossRefGoogle Scholar
Liu, A., Kovacik, P., Peard, N., Tian, W., Goktas, H., Lau, J., and Gleason, K.K.: Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 29 (2017).Google ScholarPubMed
Jiang, H., Cai, X., Qian, Y., Zhang, C., Zhou, L., Liu, W., and Huang, W.: V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A 5, 23727 (2017).CrossRefGoogle Scholar
Ma, W., Chen, S., Yang, S., Chen, W., Weng, W., Cheng, Y., and Zhu, M.: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151 (2017).CrossRefGoogle Scholar
Wang, L., Zhang, G., Zhang, X., Shi, H., Zeng, W., Zhang, H., and Duan, H.: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 5, 14801 (2017).CrossRefGoogle Scholar
Lu, C., Wang, D., Zhao, J., Han, S., and Chen, W.: A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv. Funct. Mater. 27, 1606219 (2017).CrossRefGoogle Scholar
Zhang, X., Kar, M., Mendes, T.C., Wu, Y., and MacFarlane, D.R.: Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv. Energy Mater. 8, 1702702 (2018).CrossRefGoogle Scholar
Zou, Y., Zhang, Z., Zhong, W., and Yang, W.: Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 6, 9245 (2018).CrossRefGoogle Scholar
Zhang, J., Li, Y., Zhang, Y., Qian, X., Niu, R., Hu, R., and Zhu, J.: The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. Nano Energy 43, 91 (2018).CrossRefGoogle Scholar
Saw, L.H., Ye, Y., and Tay, A.A.: Integration issues of lithium-ion battery into electric vehicles battery pack. J. Cleaner Prod. 113, 1032 (2016).CrossRefGoogle Scholar
Muldoon, J., Bucur, C.B., Boaretto, N., Gregory, T., and Di Noto, V.: Polymers: Opening doors to future batteries. Polym. Rev. 55, 208 (2015).CrossRefGoogle Scholar
Qiu, W., Jiao, J., Xia, J., Zhong, H., and Chen, L.: A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem.–Eur. J. 21, 4359 (2015).CrossRefGoogle ScholarPubMed
Balogun, M.S., Yu, M., Huang, Y., Li, C., Fang, P., Liu, Y., and Tong, Y.: Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 11, 348 (2015).CrossRefGoogle Scholar
Wang, X., Jiang, K., and Shen, G.: Flexible fiber energy storage and integrated devices: Recent progress and perspectives. Mater. Today 18, 265 (2015).CrossRefGoogle Scholar
Yoon, S., Lee, S., Kim, S., Park, K.W., Cho, D., and Jeong, Y.: Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 279, 495 (2015).CrossRefGoogle Scholar
Wang, K., Luo, S., Wu, Y., He, X., Zhao, F., Wang, J., and Fan, S.: Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23, 846 (2013).CrossRefGoogle Scholar
Hu, J.W., Wu, Z.P., Zhong, S.W., Zhang, W.B., Suresh, S., Mehta, A., and Koratkar, N.: Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87, 292 (2015).CrossRefGoogle Scholar
Gao, J., Yoshio, M., Qi, L., and Wang, H.: Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 278, 452 (2015).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).CrossRefGoogle ScholarPubMed
Raccichini, R., Varzi, A., Passerini, S., and Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015).CrossRefGoogle ScholarPubMed
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., and Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).CrossRefGoogle ScholarPubMed
Tian, H., Shu, Y., Cui, Y.L., Mi, W.T., Yang, Y., Xie, D., and Ren, T.L.: Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6, 699 (2014).CrossRefGoogle ScholarPubMed
Bai, X., Yu, Y., Kung, H.H., Wang, B., and Jiang, J.: Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42 (2016).CrossRefGoogle Scholar
Oakes, L., Cohn, A.P., Westover, A.S., and Pint, C.L.: Electrophoretic stabilization of freestanding pristine graphene foams with carbon nanotubes for enhanced optical and electrical response. Mater. Lett. 159, 261 (2015).CrossRefGoogle Scholar
Yun, X., Wang, J., Shen, L., Dou, H., and Zhang, X.: Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Adv. 5, 22173 (2015).CrossRefGoogle Scholar
Liu, Y., Liu, P., Wu, D., Huang, Y., Tang, Y., Su, Y., and Feng, X.: Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage. Chem.–Eur. J. 21, 5617 (2015).CrossRefGoogle ScholarPubMed
Hu, Y., Li, X., Wang, J., Li, R., and Sun, X.: Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power Sources 237, 41 (2013).CrossRefGoogle Scholar
Chen, Y., Fu, K., Zhu, S., Luo, W., Wang, Y., Li, Y., and Danner, V.A.: Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16, 3616 (2016).CrossRefGoogle ScholarPubMed
Li, N., Chen, Z., Ren, W., Li, F., and Cheng, H.M.: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U. S. A 109, 17360 (2012).CrossRefGoogle ScholarPubMed
Hu, T., Sun, X., Sun, H., Yu, M., Lu, F., Liu, C., and Lian, J.: Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51, 322 (2013).CrossRefGoogle Scholar
Zhang, P., Qiu, J., Zheng, Z., Liu, G., Ling, M., Martens, W., and Zhang, S.: Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries. Electrochim. Acta 104, 41 (2013).CrossRefGoogle Scholar
Kuribayashi, I.: Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J. Power Sources 63, 87 (1996).CrossRefGoogle Scholar
Leijonmarck, S., Cornell, A., Lindbergh, G., and Wågberg, L.: Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties. Nano Energy 2, 794 (2013).CrossRefGoogle Scholar
Jabbour, L., Destro, M., Chaussy, D., Gerbaldi, C., Penazzi, N., Bodoardo, S., and Beneventi, D.: Flexible cellulose/LiFePO4 paper-cathodes: Toward eco-friendly all-paper Li-ion batteries. Cellulose 20, 571 (2013).CrossRefGoogle Scholar
Jabbour, L., Destro, M., Gerbaldi, C., Chaussy, D., Penazzi, N., and Beneventi, D.: Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22, 3227 (2012).CrossRefGoogle Scholar
Liu, B., Zhang, J., Wang, X., Chen, G., Chen, D., Zhou, C., and Shen, G.: Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005 (2012).CrossRefGoogle Scholar
Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., and Ruoff, R.S.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011).CrossRefGoogle ScholarPubMed
Tsao, C.H. and Kuo, P.L.: Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J. Membr. Sci. 489, 36 (2015).CrossRefGoogle Scholar
Juang, R.S., Hsieh, C.T., Chen, P.A., and Chen, Y.F.: Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sources 286, 526 (2015).CrossRefGoogle Scholar
Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210 (2012).CrossRefGoogle Scholar
Wright, P.V.: Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7, 319 (1975).CrossRefGoogle Scholar
Berthier, C., Gorecki, W., Minier, M., Armand, M.B., Chabagno, J.M., and Rigaud, P.: Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11, 91 (1983).CrossRefGoogle Scholar
Yang, M. and Hou, J.: Membranes in lithium ion batteries. Membranes 2, 367 (2012).CrossRefGoogle ScholarPubMed
Seidel, S.M., Jeschke, S., Vettikuzha, P., and Wiemhöfer, H.D.: PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chem. Commun. 51, 12048 (2015).CrossRefGoogle ScholarPubMed
Venault, A., Liu, Y.H., Wu, J.R., Yang, H.S., Chang, Y., Lai, J.Y., and Aimar, P.: Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly(ethylene glycol) methacrylate blend. J. Membr. Sci. 450, 340 (2014).CrossRefGoogle Scholar
Liang, H.Q., Wu, Q.Y., Wan, L.S., Huang, X.J., and Xu, Z.K.: Thermally induced phase separation followed by in situ sol–gel process: A novel method for PVDF/SiO2 hybrid membranes. J. Membr. Sci. 465, 56 (2014).CrossRefGoogle Scholar
Idris, N.H., Rahman, M.M., Wang, J.Z., and Liu, H.K.: Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 201, 294 (2012).CrossRefGoogle Scholar
Zalewska, A., Bernakiewicz, A., Bystrzycka, M., Marczewski, M., and Langwald, N.: Properties of gel electrolytes based on PVdF/HFP containing anion receptors. Int. J. Hydrogen Energy 39, 2977 (2014).CrossRefGoogle Scholar
Ding, G., Qin, B., Liu, Z., Zhang, J., Zhang, B., Hu, P., and Cui, G.: A polyborate coated cellulose composite separator for high performance lithium ion batteries. J. Electrochem. Soc. 162, A834 (2015).CrossRefGoogle Scholar
Azzaoui, K., Mejdoubi, E., Lamhamdi, A., Zaoui, S., Berrabah, M., Elidrissi, A., and Al-Deyab, S.S.: Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr. Polym. 115, 170 (2015).CrossRefGoogle ScholarPubMed
Li, M.X., Wang, W., Yang, X.Y.Q., Chang, Z., Wu, Y.P., and Holze, R.: A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 476, 112 (2015).CrossRefGoogle Scholar
Xu, Y., Zhu, Y., Han, F., Luo, C., and Wang, C.: 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5, 1400753 (2015).CrossRefGoogle Scholar
Lei, D., Qu, B., Lin, H.T., and Wang, T.: Facile approach to prepare porous GeO2/SnO2 nanofibers via a single spinneret electrospinning technique as anodes for lithium-ion batteries. Ceram. Int. 41, 10308 (2015).CrossRefGoogle Scholar
Qiu, L., Shao, Z., Yang, M., Wang, W., Wang, F., Xie, L., and Zhang, Y.: Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery. Carbohydr. Polym. 96, 240 (2013).CrossRefGoogle ScholarPubMed
Weng, B., Xu, F., Alcoutlabi, M., Mao, Y., and Lozano, K.: Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22, 1311 (2015).CrossRefGoogle Scholar
Zhang, J., Yue, L., Kong, Q., Liu, Z., Zhou, X., Zhang, C., and Duan, Y.: Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 4, 3935 (2014).CrossRefGoogle ScholarPubMed
Xu, Q., Kong, Q., Liu, Z., Zhang, J., Wang, X., Liu, R., and Cui, G.: Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv. 4, 7845 (2014).CrossRefGoogle Scholar
Chiappone, A., Nair, J.R., Gerbaldi, C., Zeno, E., and Bongiovanni, R.: Cellulose/acrylate membranes for flexible lithium batteries electrolytes: Balancing improved interfacial integrity and ionic conductivity. Eur. Polym. J. 57, 22 (2014).CrossRefGoogle Scholar
Li, H., Song, J., Wang, L., Feng, X., Liu, R., Zeng, W., and Wang, L.: Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 9, 193 (2017).CrossRefGoogle ScholarPubMed
Scalia, A., Bella, F., Lamberti, A., Bianco, S., Gerbaldi, C., Tresso, E., and Pirri, C.F.: A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J. Power Sources 359, 311 (2017).CrossRefGoogle Scholar
Cao, X., Zheng, B., Shi, W., Yang, J., Fan, Z., Luo, Z., and Zhang, H.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695 (2015).CrossRefGoogle ScholarPubMed
Xu, J., Wang, D., Yuan, Y., Wei, W., Gu, S., Liu, R., and Xu, W.: Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22, 1355 (2015).CrossRefGoogle Scholar
Xiao, X., Li, T., Peng, Z., Jin, H., Zhong, Q., Hu, Q., and Chen, J.: Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6, 1 (2014).CrossRefGoogle Scholar
Zhao, J., Chen, J., Xu, S., Shao, M., Zhang, Q., Wei, F., and Duan, X.: Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 24, 2938 (2014).CrossRefGoogle Scholar
Mandal, S., Pal, A., Arun, R.K., and Chanda, N.: Gold nanoparticle embedded paper with mechanically exfoliated graphite as flexible supercapacitor electrodes. J. Electroanal. Chem. 755, 22 (2015).CrossRefGoogle Scholar
Xin, G., Wang, Y., Liu, X., Zhang, J., Wang, Y., Huang, J., and Zang, J.: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochim. Acta 167, 254 (2015).CrossRefGoogle Scholar
Xiao, F., Yang, S., Zhang, Z., Liu, H., Xiao, J., Wan, L., and Liu, Y.: Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci. Rep. 5, 9359 (2015).CrossRefGoogle ScholarPubMed
Chee, W.K., Lim, H.N., Harrison, I., Chong, K.F., Zainal, Z., Ng, C.H., and Huang, N.M.: Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88 (2015).CrossRefGoogle Scholar
Xu, H., Hu, X., Sun, Y., Yang, H., Liu, X., and Huang, Y.: Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 1148 (2015).CrossRefGoogle Scholar
Han, C., Zhang, C., Tang, W., Li, X., and Wang, Z.L.: High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 8, 722 (2015).CrossRefGoogle Scholar
Bettini, L.G., Piseri, P., De Giorgio, F., Arbizzani, C., Milani, P., and Soavi, F.: Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition. Electrochim. Acta 170, 57 (2015).CrossRefGoogle Scholar
Hu, H., Pei, Z., and Ye, C.: Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 1, 82 (2015).CrossRefGoogle Scholar
Liang, Y., Wang, Z., Huang, J., Cheng, H., Zhao, F., Hu, Y., and Qu, L.: Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 3, 2547 (2015).CrossRefGoogle Scholar
Yu, Z., Tetard, L., Zhai, L., and Thomas, J.: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015).CrossRefGoogle Scholar
Sundramoorthy, A.K., Wang, Y.C., and Gunasekaran, S.: Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res. 8, 3430 (2015).CrossRefGoogle Scholar
Kang, Y.J., Chung, H., Kim, M.S., and Kim, W.: Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Appl. Surf. Sci. 355, 160 (2015).CrossRefGoogle Scholar
Zeng, Z., Long, X., Zhou, H., Guo, E., Wang, X., and Hu, Z.: On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 107 (2015).CrossRefGoogle Scholar
Raj, C.J., Kim, B.C., Cho, W.J., Lee, W.G., Jung, S.D., Kim, Y.H., and Yu, K.H.: Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl. Mater. Interfaces 7, 13405 (2015).CrossRefGoogle ScholarPubMed
Pettersson, F., Keskinen, J., Remonen, T., Von Hertzen, L., Jansson, E., Tappura, K., and Österbacka, R.: Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J. Power Sources 271, 298 (2014).CrossRefGoogle Scholar
Wang, X., Yin, Y., Hao, C., and You, Z.: A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide–carbon nanotube composite films. Carbon 82, 436 (2015).CrossRefGoogle Scholar
Wang, S., Liu, N., Tao, J., Yang, C., Liu, W., Shi, Y., and Gao, Y.: Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3, 2407 (2015).CrossRefGoogle Scholar
Sun, G., An, J., Chua, C.K., Pang, H., Zhang, J., and Chen, P.: Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem. Commun. 51, 33 (2015).CrossRefGoogle Scholar
Liu, X., Qian, T., Xu, N., Zhou, J., Guo, J., and Yan, C.: Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 92, 348 (2015).CrossRefGoogle Scholar