Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-5vsr4 Total loading time: 0.279 Render date: 2021-05-12T14:20:34.455Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A transmission electron microscopy investigation of inverse melting in Nb45Cr55

Published online by Cambridge University Press:  31 January 2011

W. Sinkler
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
C. Michaelsen
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
R. Bormann
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
Get access

Abstract

In inverse melting, a supersaturated crystalline phase transforms polymorphously under heat treatment to the amorphous state. Inverse melting of body-centered cubic (bcc) Nb45Cr55 is studied using transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The crystalline to amorphous transformation is heterogeneous, initiating at the bcc grain boundaries. HRTEM reveals 2–3 nm domains with medium range order (MRO) in the amorphous phase. Preferred orientation of MRO domains is found on a scale corresponding to the precursor bcc grain size. Using HRTEM and calorimetry, MRO development in cosputtered Nb45Cr55 films is characterized and compared to that in the amorphous phase produced by inverse melting.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2.Okamoto, P. R. and Meshii, M., in Science of Advanced Materials, edited by Weidersich, H. and Meshii, M. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 33.Google Scholar
3.Schwarz, R. B. and Petrich, R. R., J. Less-Comm. Metals 140, 171 (1988).CrossRefGoogle Scholar
4.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
5.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
6.Thompson, C. V., J. Mater. Res. 7, 367 (1992).CrossRefGoogle Scholar
7.Busch, R., Gärtner, F., Schneider, S., Bormann, R., and Haasen, P., in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 229.Google Scholar
8.Yan, Z. H., Klassen, T., Michaelsen, M., Oehring, M., and Bormann, R., Phys. Rev. B 47, 8520 (1993).CrossRefGoogle Scholar
9.Michaelsen, C., Oehring, M., and Bormann, R., Appl. Phys. Lett. 65, 318 (1994).CrossRefGoogle Scholar
10.Michaelsen, C., Sinkler, W., Pfullmann, T., and Bormann, R., J. Appl. Phys. 80, 2156 (1996).CrossRefGoogle Scholar
11.Sinkler, W. and Bormann, R., unpublished.Google Scholar
12.Michaelsen, C., unpublished.Google Scholar
13.Greer, A. L., J. Less-Comm. Metals. 140, 327 (1988).CrossRefGoogle Scholar
14.Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
15.Okamoto, P., Rehn, L. E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Comm. Metals 140, 231 (1988).CrossRefGoogle Scholar
16.Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., Phys. Rev. B 48, 42 (1993).CrossRefGoogle Scholar
17.Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R., and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).CrossRefGoogle Scholar
18.Krill, C. E. I., Li, J., Garland, C. M., Ettl, C., Samwer, K., Yelon, W. B., and Johnson, W. L., J. Mater. Res. 10, 280 (1995).CrossRefGoogle Scholar
19.Ettl, C. and Samwer, K., J. Non-Cryst. Solids 156–158, 502 (1993).CrossRefGoogle Scholar
20.Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F., and Kluge, M., J. Mater. Res. 5, 286 (1990).CrossRefGoogle Scholar
21.Meng, W. J., Okamoto, P. R., and Rehn, L. E., in Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 99.Google Scholar
22.Mori, H. and Fujita, G., in Yamada Conference IX, “Dislocations in Solids,” edited by Suzuki, H. (Univ. of Tokyo Press, Tokyo, 1985), p. 563.Google Scholar
23.Hirotsu, Y. and Akada, R., Jpn. J. Appl. Phys. 23, L479 (1984).CrossRefGoogle Scholar
24.Anazawa, K., Hirotsu, Y., and Inoue, Y., Acta Metall. et Mater. 42, 1997 (1994).CrossRefGoogle Scholar
25.Krivanek, O. J., in High-Resolution Transmission Electron Microscopy, edited by Buseck, P. R., Cowley, J. M., and Eyring, L. (Oxford University Press, Oxford, 1988), p. 519.Google Scholar
26.Gente, C., Dissertation, Technische Universität Hamburg-Harburg (1996).Google Scholar
27.Michaelsen, C., Philos. Mag. A 72, 813 (1995).CrossRefGoogle Scholar
28.Krakow, W., Ast, D. G., Goldfarb, W., and Siegel, B., Philos. Mag. 33, 985 (1976).CrossRefGoogle Scholar
29.Hirotsu, Y., Mater. Sci. Eng. A179/A180, 97 (1994).CrossRefGoogle Scholar
30.Hono, K., Zhang, Y., Inoue, A., and Sakurai, T., In Metastable Metal-Based Phases and Microstructures, edited by Bormann, R., Mazzone, G., Averback, R. S., Shull, R. D., and Ziolo, R. F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996), p. 203.Google Scholar
31.Shiojiri, M., Miyano, T., and Kaito, C., Jpn. J. Appl. Phys. 18, 1937 (1979).CrossRefGoogle Scholar
32.Nakamura, M., Hirotsu, T., Anazawa, K., Makino, A., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A179/A180, 487 (1994).CrossRefGoogle Scholar
33.Makino, A., Suzuki, K., Inoue, A., Hirotsu, Y., and Masumoto, T., J. Magn. Mag. Mater. 133, 329 (1994).CrossRefGoogle Scholar
34.Luzzi, D. E. and Meshii, M., J. Mater. Res. 1, 617 (1986).CrossRefGoogle Scholar
35.Rostoker, W., Trans AIME 203, 113 (1955).Google Scholar
36.Blatter, A., von Allmen, M., and Baltzer, N., J. Appl. Phys. 62, 276 (1987).CrossRefGoogle Scholar
37.Blatter, A., Gfeller, J., and von Allmen, M., J. Less-Comm. Metals 140, 317 (1988).CrossRefGoogle Scholar
38.Sinkler, W. and Luzzi, D. E., in Beam Solid Interactions, edited by Aziz, M. J., Stephenson, H. B., and Cherns, D. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1990), p. 209.Google Scholar
39.Prasad, R., Somekh, R. E., and Greer, A. L., Mater. Sci. Eng. A133, 606 (1991).CrossRefGoogle Scholar
40.Ohsaka, K., Trinh, E. H., Holzer, J. C., and Johnson, W. L., Appl. Phys. Lett. 60, 1079 (1992).CrossRefGoogle Scholar
41.Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975), Vol. 1.Google Scholar
42.Sinkler, W., Michaelsen, C., Bormann, R., Spilsbury, D., and Cowlam, N., Phys. Rev. B 55, 2874 (1997).CrossRefGoogle Scholar
43.Bernal, J. D., Nature (London) 183, 141 (1959).CrossRefGoogle Scholar
44.Sinkler, W., Acta Mater. 44, 1623 (1996).CrossRefGoogle Scholar
45.Sinkler, W., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J. S., Park, B., Greer, A. L., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 263.Google Scholar
46.Bormann, R. and Zöltzer, Z., Phys. Status Solidi 131, 691 (1992).CrossRefGoogle Scholar
47.Waseda, Y. and Chen, H. S., in Proc. of the 3rd Int. Conf. on Rapidly Quenched Metals, edited by Cantor, B. (The Metals Society, Sussex, England, 1978), Vol. 2, p. 415.Google Scholar
48.Egami, T., J. Mater. Sci. 13, 2587 (1978).CrossRefGoogle Scholar
49.Schulz, R., Matijasevic, V., and Johnson, W. L., Phys. Rev. B 30, 6856 (1984).CrossRefGoogle Scholar
50.Schulz, R., Samwer, K., and Johnson, W. L., J. Non-Cryst. Solids 61 & 62, 997 (1984).CrossRefGoogle Scholar
51.Krebs, H. U., Webb, D. J., and Marshall, A. F., Phys. Rev. B 35, 5392 (1987).CrossRefGoogle Scholar
52.Hirotsu, Y. and Anazawa, K., in Current Topics in Amorphous Materials: Physics and Technology, edited by Sakurai, Y., Hamakawa, Y., Masumoto, T., Shirae, K., and Suzuki, K. (North-Holland, Amsterdam, 1993), p. 39.CrossRefGoogle Scholar
53.Gärtner, F., Michaelsen, C., and Bormann, R., Philos. Mag. B (1997, in press).Google Scholar
54.Schlüter, H., Freyhardt, H. C., Krebs, H. U., and Bormann, R., Z. Phys. Chem. 157, 407 (1988).CrossRefGoogle Scholar
55.Visokay, M. R., Kuwabara, M., Saffari, H., Hayashi, H., Sinclair, R., and Onishi, Y., in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 381.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A transmission electron microscopy investigation of inverse melting in Nb45Cr55
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A transmission electron microscopy investigation of inverse melting in Nb45Cr55
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A transmission electron microscopy investigation of inverse melting in Nb45Cr55
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *