Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.365 Render date: 2021-12-02T20:29:02.506Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Threading defect elimination in GaN nanowires

Published online by Cambridge University Press:  08 June 2011

Stephen D. Hersee*
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Ashwin K. Rishinaramangalam
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Michael N. Fairchild
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Lei Zhang
Affiliation:
Nanocrystal Corporation, Albuquerque, New Mexico 87124
Petros Varangis
Affiliation:
Nanocrystal Corporation, Albuquerque, New Mexico 87124
*
a)Address all correspondence to this author. e-mail: shersee@chtm.unm.edu
Get access

Abstract

This study describes the elimination of threading dislocations (TDs) in GaN nanostructures. Cross-sectional transmission electron microscopy (XTEM) analysis reveals that the nominal [0001] line direction of a TD changes when it enters a GaN nanostructure and the dislocation then terminates at a sidewall facet. It is suggested that the driving force for this process is the reduction of dislocation line energy, and for a pure-edge dislocation, this TD elimination process can be accomplished simply by dislocation climb. This mechanism is active whenever a threading defect is in close proximity to a surface. Preliminary XTEM analysis of defects in AlGaN and InGaN core–shell growth onto GaN nanostructures is also shown. Although more work is required to improve the quality of core–shell InGaN epitaxial growth, nanostructures appear to offer a route to defect-free, nonpolar GaN-based devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hersee, S.D., Sun, X.Y., and Wang, X.: The controlled growth of GaN nanowires. Nano Lett. 6, 1808 (2006).CrossRefGoogle ScholarPubMed
2.Yoo, J., Hong, Y.-J., An, S.J., Yi, G.-C., Chon, B., Joo, T., Kim, J.-W., and Lee, J.-S.: Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl. Phys. Lett. 89, 043124 (2006).CrossRefGoogle Scholar
3.Talin, A., Leonard, F., Swartzentruber, B.S., Wang, X., and Hersee, S.D.: Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 101, 076802 (2008).CrossRefGoogle ScholarPubMed
4.Talin, A.A., Swartzentruber, B.S., Leonard, F., Wang, X., and Hersee, S.D.: Electrical transport in GaN nanowires grown by selective epitaxy. J. Vac. Sci. Technol. B 27, 2040 (2009).CrossRefGoogle Scholar
5.unpublished work, paper in preparation.Google Scholar
6.Kavanagh, K.L.: Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 25, 024006 (2010).CrossRefGoogle Scholar
7.Kim, H.M.: Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv. Mater. 15, 567 (2003).CrossRefGoogle Scholar
8.Hersee, S.D., Fairchild, M.N., Rishinaramangalam, A.K., Ferdous, M., Zhang, L., Varangis, P., Swartzentruber, B., and Talin, A.A.: GaN nanowire light emitting diodes based on templated and scalable nanowire growth process. Electron. Lett. 45, 75 (2009).CrossRefGoogle Scholar
9.Kishino, K., Kikuchi, A., Sekiguchi, H., and Ishizawa, S.: InGaN/GaN nanocolumn LEDs emitting from blue to red. SPIE Proc. 6473, 64730T (2007).CrossRefGoogle Scholar
10.Ferdous, M., Wang, X., Fairchild, M.N., and Hersee, S.D.: Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 91, 231107 (2007).CrossRefGoogle Scholar
11.Mukai, T., Takekawa, K., and Nakamura, S.: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 37(Part 2), L839 (1998).CrossRefGoogle Scholar
12.Brueck, S.R.J.: Optical and interferometric lithography—Nanotechnology enablers. Proc. IEEE 93, 1704 (2005).CrossRefGoogle Scholar
13.Ferdous, M.S., Sun, X.Y., Wang, X., Fairchild, M.N., and Hersee, S.D.: Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy. J. Appl. Phys. 99, 096105 (2006).CrossRefGoogle Scholar
14.Tanaka, S., Kawaguchi, Y., Sawaki, N., Hibino, M., and Hiramatsu, K.: Structural characterization of GaN laterally overgrown on a (111) Si substrate. Appl. Phys. Lett. 79, 955 (2001).CrossRefGoogle Scholar
15.Béré, A. and Serra, A.: Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002).CrossRefGoogle Scholar
16.Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Öberg, S., and Briddon, P.R.: Theory of threading edge and screw dislocations in GaN. Phys. Rev. Lett. 79, 3672 (1997).CrossRefGoogle Scholar
17.Yong, A.M., Soh, C.B., Zhang, X.H., Chow, S.Y., and Chua, S.J.: Investigation of V-defects formation in InGaN/GaN multiple quantum well grown on sapphire. Thin Solid Films 515, 4496 (2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Threading defect elimination in GaN nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Threading defect elimination in GaN nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Threading defect elimination in GaN nanowires
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *