Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-kbvt8 Total loading time: 0.192 Render date: 2021-10-19T13:26:11.837Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Thermodynamic parallels between solid-state amorphization and melting

Published online by Cambridge University Press:  31 January 2011

D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
P. R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. Yip
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. F. Lutsko
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
M. Kluge
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

A thermodynamics-based description, in the form of an extended phase diagram, of melting and solid-state amorphization is proposed which brings out the parallels between these two phenomena and suggests that their underlying causes are apparently the same. Through molecular dynamics simulations we demonstrate that every crystal, in principle, can undergo two different types of melting transitions with characteristic features that are also observed in radiation- and hydrogenation-induced amorphization experiments on ordered alloys. The first type, defined in terms of free energies, is shown to involve the heterogeneous nucleation of the liquid or amorphous phase at extended lattice defects (such as grain boundaries, free surfaces, voids, or dislocations) and subsequent thermally-activated propagation of solid-liquid/amorphous interfaces through the crystal. The second type, arising from a mechanical instability limit described by Born, is homogeneous and does not require thermally-activated atom mobility. It is suggested that the role of chemical and structural disordering, a prerequisite for irradiation- but not hydrogenation-induced solid-state amorphization, is merely to drive the crystal lattice to a critical combination of volume and temperature at which the amorphous phase can form either heterogeneously or homogeneously.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bloch, J., J. Nucl. Mater. 6, 203 (1962).CrossRefGoogle Scholar
2 For recent reviews, see Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986); Solid-State Amorphizing Transformations, edited by Schwartz, R. B. and Johnson, W. L. (Elsevier Sequoia, The Netherlands, 1988); J. Less-Common Met. 140 (1988).Google Scholar
3Cahn, R.W. and Johnson, W. L., J. Mater. Res. 1, 724 (1986).CrossRefGoogle Scholar
4Richet, P., Nature 331, 56 (1988).CrossRefGoogle Scholar
5Fecht, H. J. and Johnson, W. L., Nature 334, 50 (1989).CrossRefGoogle Scholar
6Okamoto, P. R., Rehn, L.E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Common Met. 140, 231 (1988).CrossRefGoogle Scholar
7Tallon, J.L., Phil. Mag. 39, 151 (1979); J.L. Tallon and W. H. Robinson, Phil. Mag. 36, 741 (1977); J. L. Tallon, J. Phys. Chem. Solids 41, 837 (1984).CrossRefGoogle Scholar
8Cormia, R. L., Mackenzie, J. D., and Turnbull, D., J. Appl. Phys. 34, 2239 (1963).CrossRefGoogle Scholar
9Daeges, J., Gleiter, H., and Perepezko, J. H., Phys. Lett. A119, 79 (1986); R.W. Cahn, Nature 323, 668 (1986).CrossRefGoogle Scholar
10Cotterill, R. M. J., J. Cryst. Growth 48, 582 (1980).CrossRefGoogle Scholar
11Phillpot, S. R., Lutsko, J. F., Wolf, D., and Yip, S., Phys. Rev. B 40, 2831 (1989).CrossRefGoogle Scholar
12Born, M. and Huang, K., Dynamical Theory of Crystal Lattices (Oxford, 1962).Google Scholar
13Mori, H., Fujita, H., Tendo, M., and Fujita, M., Scripta Metall. 18, 783 (1984); D. E. Luzzi and M. Meshii, Res. Mechanica 21, 207 (1987).CrossRefGoogle Scholar
14Mori, H. and Fujita, H., Proc. Yamada Conf. VII on “Dislocations in Solids”, edited by Suzuki, H. (Univ. of Tokyo, 1985), p. 563.Google Scholar
15Meng, W. J., Okamoto, P.R., Thompson, L.J., Kestel, B. J., and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988); W. J. Meng, P. R. Okamoto, and L.E. Rehn, Proc. ASM Symp. on “Science of Advanced Materials”, edited by Wiedersich, H. and Meshii, M., Chicago, Sept. 1989 (to be published).CrossRefGoogle Scholar
I6Ubbelohde, A. R., Molten State of Matter: Melting and Crystal Structure (Wiley, Chichester, 1978).Google Scholar
17Boyer, L. L., Phase Transitions 5, 1 (1985).CrossRefGoogle Scholar
18Cahn, R.W., Nature 273, 491 (1978).CrossRefGoogle Scholar
19Cahn, R.W., Nature 323, 668 (1986).CrossRefGoogle Scholar
20Ainslie, N. G., Mackenzie, J. D., and Turnbull, D., J. Phys. Chem. 65, 1718 (1961).CrossRefGoogle Scholar
21Buffat, P. and Borel, U-P., Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
22Boyce, J. B. and Stutzmann, M., Phys. Rev. Lett. 54, 562 (1985).CrossRefGoogle Scholar
23Rossouw, C.J. and Donnelly, S.E., Phys. Rev. Lett. 55, 2960 (1985).CrossRefGoogle Scholar
24Abraham, F.F., Adv. Phys. 35, 1 (1986).CrossRefGoogle Scholar
25Lutsko, J. F., Wolf, D., Phillpot, S. R., and Yip, S., Phys. Rev. B 40, 2841 (1989).CrossRefGoogle Scholar
26Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
27Foiles, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
28Lutsko, J. F., Wolf, D., Yip, S., Phillpot, S. R., and Nguyen, T., Phys. Rev. B 38, 11572 (1988).CrossRefGoogle Scholar
29Wolf, D., J. de Phys. Colloq. C4 46, Cr-197 (1985).Google Scholar
30Frenkel, J., Phys. Z. Sowjetunion 1, 498 (1932).Google Scholar
31Broughton, J. Q., Gilmer, G. H., and Jackson, K.A., Phys. Rev. Lett. 49, 1496 (1982).CrossRefGoogle Scholar
32Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
33Ray, J. and Rahman, A., J. Chem. Phys. 80, 4423 (1984); Phys. Rev. B 32, 733 (1985).CrossRefGoogle Scholar
34Luzzi, D.E., Mori, H., Fujita, H., and Meshii, M., Scripta Metall. 19, 897 (1985).CrossRefGoogle Scholar
35Fujita, H., Mori, H., and Fujita, M., Proc. 7th Int. Conf. on “High-Voltage Electron Microscopy”, Berkeley, edited by Fisher, R. M., Gronsky, R., and Westmacott, K. H., 233 (1984).Google Scholar
36Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).CrossRefGoogle Scholar
37Schwartz, R. B. and Petrich, R. R., J. Less-Common Met. 140, 171 (1988).CrossRefGoogle Scholar
38Seidel, A., Linker, G., and Meyer, O., J. Less-Common Met. 145, 189 (1988).CrossRefGoogle Scholar
39Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. Lett. 62, 1142 (1989).CrossRefGoogle Scholar
40Koike, J., Okamoto, P. R., Rehn, L. E., Bhadra, R., Grimsditch, M., and Meshii, M., MRS Symp. Proc. (to be published).Google Scholar
41Kroner, E., J. Eng. Mech. Div. 106, 890 (1980).Google Scholar
42Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
43Nichols, C. S. and Clarke, D., MRS Symp. Proc. (to be published).Google Scholar
44Mishima, O., Calvert, L. D., and Whalley, E., Nature 310, 3935 (1984).CrossRefGoogle Scholar
45Seidman, D. N., Averback, R. S., Okamoto, P. R., and Bailey, A. C., MRS Symp. Proc. 51, 349 (1987).CrossRefGoogle Scholar
46Vook, V., Phys. Rev. 125, 855 (1962).CrossRefGoogle Scholar
47Andersson, S., Phys. Lett. 33A, 455 (1970).CrossRefGoogle Scholar
48 For a recent review, see Ehrhart, P., Robrock, K. H., and Schober, H., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (Elsevier, North-Holland, Amsterdam, 1986), pp. 7106.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermodynamic parallels between solid-state amorphization and melting
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermodynamic parallels between solid-state amorphization and melting
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermodynamic parallels between solid-state amorphization and melting
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *