Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.299 Render date: 2021-12-08T01:34:34.889Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Synthesis and Structure of BxC1−x Intercalation Compounds with Heavy Alkali Metals (K, Rb, and Cs)

Published online by Cambridge University Press:  31 January 2011

L. Duclaux
Affiliation:
Centre de Recherche sur la Matière Divisée, Centre National de la Recherche Scientifique-University, 45071 Orléans Cedex 2, France
F. Béguin
Affiliation:
Centre de Recherche sur la Matière Divisée, Centre National de la Recherche Scientifique-University, 45071 Orléans Cedex 2, France
B. Ottaviani
Affiliation:
Centre de Recherche Paul Pascal, Centre National de la Recherche Scientifique, 33600 Pessac, France
S. Flandrois
Affiliation:
Centre de Recherche Paul Pascal, Centre National de la Recherche Scientifique, 33600 Pessac, France
Get access

Abstract

BxC1−x (x = 0.1 and 0.25) oriented platelets were intercalated with alkali metal vapor (M = K, Rb, Cs), giving first-stage M(B0.1C0.9)8 and M(B0.25C0.75)10. The presence of M(BxC1−x)5 dense domains interstratified in the first-stage structure were brought out from the 00.ℓ simulations. The presence of these domains is attributed to the acceptor electron effect of boron, which slightly enhances the intercalation rate as compared to pure carbon. Intercalation of Cs in liquid ammonia is improved using 1600 °C heat-treated B0.25C0.75 as a host material, and the composition Cs(B0.25C0.75)12 is reached after intercalation. In intercalation compounds of Cs in liquid ammonia obtained from heat-treated B0.25C0.75, as the heat-treatment temperature (HTT) was increased from 1600 to 2000 °C, the segregation of first stage was observed in two structures Cs(BxC1−x)8 and Cs(BxC1−x)10 with the respective 2 × 2 0° and 2.23 × 2.23 two-dimensional lattices of the cesium atoms. The presence of these two structures is assigned to the heterogeneity of the host material induced by the formation of B4C boron carbide domains and the consecutive boron elimination of the BxC1−x lamellar phase with increasing HTT.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lowell, C.E., J. Am. Ceram. Soc. 50, 142 (1967).CrossRefGoogle Scholar
2.Ottaviani, B., Ph.D. Thesis, University of Bordeaux, France (1996).Google Scholar
3.Derré, A., Filipozzi, L., and Peron, F., J de Physique IV colloque C3 supplement to J. de physique II. 195 (1993).Google Scholar
4.Flandrois, S., Ottaviani, B., Derré, A., and Tressaud, A., J. Phys. Chem. Solids 57, 741 (1996).CrossRefGoogle Scholar
5.Duclaux, L., Ottaviani, B., Piraux, L., Grivei, E., Issi, J.P., Béguin, F., and Flandrois, S., Mol. Cryst. Liq. Cryst. 310, 27 (1998).CrossRefGoogle Scholar
6.Saugnac, F. and Marchand, A., C. R. Acad. Sci. Paris 310, 187 (1990).Google Scholar
7.Herold, A., Bull. Soc. Chim. Fr. 999 (1955).Google Scholar
8.Duclaux, L., Rannou, I., Lelaurain, M., and Béguin, F., J. Mater. Res. 11, 608 (1996).CrossRefGoogle Scholar
9.Herold, A., in Intercalated Materials, edited by Levy, F. (D. Reidel, Dordrecht, Holland 1979), p.400.Google Scholar
10.Maire, J. and Mering, J., in Chemistry and Physics of Carbon, edited by Walker, P.L. Jr, (Marcel Dekker, New York, 1970), Vol. 6, p. 125.Google Scholar
11.Guérard, D. and Lagrange, P., in Physics of Intercalation Compounds (proceedings of the international conference on the Physics of Intercalation Compounds, Trieste, Italy, July 6–10, 1981), edited by Pietronero, and Tosatti, E. (Springer-Verlag, Berlin, Heidelberg, New York, 1981), p. 223.CrossRefGoogle Scholar
12.Rüdorff, W., Schulze, E., and Rubisch, O., Z. Anorg. Allg. Chem. 282, 232 (1955).CrossRefGoogle Scholar
13.Salzano, F.J. and Aronson, S., J. Inorg. Nucl. Chem. 26, 1456 (1964).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and Structure of BxC1−x Intercalation Compounds with Heavy Alkali Metals (K, Rb, and Cs)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and Structure of BxC1−x Intercalation Compounds with Heavy Alkali Metals (K, Rb, and Cs)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and Structure of BxC1−x Intercalation Compounds with Heavy Alkali Metals (K, Rb, and Cs)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *