Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T19:36:26.057Z Has data issue: false hasContentIssue false

Study of electrolytic laminated ferroelectric thin films from electroded substrates

Published online by Cambridge University Press:  31 January 2011

R. Jimeénez
Affiliation:
Inst. Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid, Spain
A. Gonzaález
Affiliation:
Inst. Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid, Spain
M. L. Calzada
Affiliation:
Inst. Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid, Spain
J. Mendiola
Affiliation:
Inst. Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid, Spain
Get access

Abstract

An electrolytic process is described to peel off ferroelectric thin films from electroded substrates. This procedure was used to study the evolution of stress in ferroelectric calcium-modified lead titanate thin films. Stresses developed during the different steps of the preparation of the film on the substrate were calculated from curvature radii of the deposited films after each step. During the film preparation, the substrate was permanently deformed by the generated stresses. This was shown by curvature of the substrate after the electrolytic separation of the film. The laminated film liberated a large amount of stresses, as deduced from the lattice parameters of the deposited and laminated film, obtained by x-ray diffraction. The moderate residual stress that the laminated film maintained could be associated with intrinsic defects of the film.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Auciello, O., Scott, J.F., and Ramesh, R., Phys. Today 7, 22 (1998).CrossRefGoogle Scholar
2.Scott, J.F., Ross, F.M., Paz de Araujo, C.A., Scott, M.C., and Huffman, M., MRS Bull. 21(7), 33 (1996).Google Scholar
3.Polla, D.L. and Francis, L.F., MRS Bull. 21(7), 59 (1996).CrossRefGoogle Scholar
4.Thorton, J.A. and Hoffman, D.W., Thin Solid Films 171, 5 (1989).Google Scholar
5.Foster, C.M., Li, Z., Bucckett, M., Miller, D., Baldo, P.M., Rehn, L.E., Bai, G.R., Guo, D., You, H., and Merkle, L., J. Appl. Phys. 78, 2607 (1995).CrossRefGoogle Scholar
6.Li, C.C. and Desu, S.B., J. Vac. Sci. Technol. A14, 1 (1996).CrossRefGoogle Scholar
7.Yamaka, E., Watanabe, H., Kimura, H., Kanaya, H., and Oh-kuma, H., J. Vac. Sci. Technol. A6, 2921 (1988).Google Scholar
8.Sirera, R., Calzada, M.L., Carmona, F., and Jimenez, B., J. Mater. Sci. Lett. 13, 1804 (1994).CrossRefGoogle Scholar
9.Martin, M.J., Zaldo, C., and Mendiola, J., Appl. Surf. Sci. 96–98, 823 (1996).Google Scholar
10.Choi, J.R., Lee, D.H., and Cho, S.M., Integr. Ferroelectr. 5, 119 (1994).Google Scholar
11.Kholkin, A.L., Calzada, M.L., Ramos, P., Mendiola, J., and Setter, N., Appl. Phys. Lett. 69, 3602 (1996).Google Scholar
12.Mendiola, J., Jimenez, B., Alemany, C., Pardo, L., and del Olmo, L., Ferroelectrics 94, 183 (1989).CrossRefGoogle Scholar
13.Mendiola, J., Calzada, M.L., Ramos, P., Martin, M.J., and Agulló-Rueda, F., Thin Solid Films 315, 195 (1998).CrossRefGoogle Scholar
14.Spierings, G.A.C.M, Dormans, G.J.M, Moors, W.G.J, Ulenaers, M.J.E, and Larsen, P.K., J. Appl. Phys. 78, 1926 (1995).CrossRefGoogle Scholar
15.Stoney, G.G., Proc. R. Soc. London, Ser. A. 82, 172 (1909).Google Scholar
16.Giuliani, J.F., Goldberg, L.S., and Batchelder, F.V., NRL Report 7273 (1971), referred byGoogle Scholar
Qu, B., Kong, D., Zhong, W., Zhang, P., and Wang, Z., Ferroelectrics 144, 39 (1993).Google Scholar
17.Cammarata, R.C., Prog. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar