Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-13T08:50:47.218Z Has data issue: false hasContentIssue false

Silicalite/poly(dimethylsiloxane) nanocomposite pervaporation membranes for acetic acid/water separation

Published online by Cambridge University Press:  31 January 2011

Shih-Yuan Lu*
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Republic of China
Hsiang-Yuan Huang
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Republic of China
Kwen-Hua Wu
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Republic of China
*
a) Address all correspondence to this author. e-mail: sylu@che.nthu.edu.tw
Get access

Abstract

Composite separation membranes of poly(dimethylsiloxane) (PDMS) containing well-dispersed silicalite particles of 50 nm were successfully prepared and applied to the preferential pervaporation of acetic acid over water. The nanocomposite membranes showed improvement on both separation factor and permeation flux for the pervaporation process, as compared to plain PDMS membranes and composite membranes containing silicalite particles of 5 μm. The improvement can be attributed to higher readily accessible specific surface area and higher sorption selectivity toward acetic acid of the nano-size silicalite particles. Improvement on membrane thermal stability was also acquired through incorporation of nano-size silicalite particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, R.Y.M.,Pervaporation Membrane Separation Processes (Elsevier, New York, 1991).Google Scholar
2.Ji, W. and Sikdar., S.K., Ind. Eng. Chem. Res. 35, 1124 (1996).CrossRefGoogle Scholar
3.Lu., S.Y., Chiu., C.P., and Huang., H.Y., J. Membr. Sci. 176, 159 (2000).Google Scholar
4.Boom., J.P., Print, I.G.M., Zwijnenberg, H., de Boer, R., Bargeman, D., and Smolders., C.A., J. Membr. Sci. 138, 273 (1998).CrossRefGoogle Scholar
5.te Hennepe, H.J.C., Boswerger, W.B.F., Bargeman, D., Mulder, M.H.V., and Smolders., C.A., J. Membr. Sci. 89, 185 (1994).CrossRefGoogle Scholar
6.te Hennepe, H.J.C., Bargeman, D., Mulder, M.H.V., and Smolders., C.A., J. Membr. Sci. 35, 39 (1987).Google Scholar
7.te Hennepe, H.J.C., Smolders, C.A., Bargeman, D., and Mulder, M.H.V., Sep. Sci. Technol. 26, 585 (1991).Google Scholar
8.Jia, M-D., Peinemann, K-V., and Behling, R-D., J. Membr. Sci. 73, 119 (1992).Google Scholar
9.Grose, R.W. and Flanigen, E.M., Crystalline silica, U.S. Patent. No. 4,061,724 (1977).Google Scholar
10.Shoeman, B.J., Persson, A.E., Sterte, J., and Otterstedt, J-E., Zeolites 14, 557 (1994).Google Scholar
11.Zecchina, A., Bordiga, S., Spoto, G., Marchese, L., Petrini, G., Leofanti, G., and Padovan, M., J. Phys. Chem. 96, 1985 (1992).Google Scholar