Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T09:16:11.810Z Has data issue: false hasContentIssue false

Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications

Published online by Cambridge University Press:  30 August 2012

Elissa H. Williams*
Affiliation:
Department of Chemistry and Biochemistry and Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030; and Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
John A. Schreifels
Affiliation:
Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030
Mulpuri V. Rao
Affiliation:
Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030
Albert V. Davydov*
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Vladimir P. Oleshko
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Nancy J. Lin
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Kristen L. Steffens
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Sergiy Krylyuk
Affiliation:
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742; and Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Kris A. Bertness
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305
Amy K. Manocchi
Affiliation:
Sensors and Electronic Devices Directorate, Army Research Lab, Adelphi, Maryland 20783
Yaroslav Koshka
Affiliation:
Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, Mississippi 39762
*
a)Address all correspondence to these authors. e-mail: ewilliah@gmu.edu
Get access

Abstract

A functionalization method for the specific and selective immobilization of the streptavidin (SA) protein on semiconductor nanowires (NWs) was developed. Silicon (Si) and silicon carbide (SiC) NWs were functionalized with 3-aminopropyltriethoxysilane (APTES) and subsequently biotinylated for the conjugation of SA. Existence of a thin native oxide shell on both Si and SiC NWs enabled efficient binding of APTES with the successive attachment of biotin and SA as was confirmed with x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and atomic force microscopy. Fluorescence microscopy demonstrated nonspecific, electrostatic binding of the SA and the bovine serum albumin (BSA) proteins to APTES-coated NWs. Inhibition of nonspecific BSA binding and enhancement of selective SA binding were achieved on biotinylated NWs. The biofunctionalized NWs have the potential to be used as biosensing platforms for the specific and selective detection of proteins.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).Google Scholar
Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4261 (2006).Google Scholar
Li, Z., Chen, Y., Li, X., Kamins, T.I., Nauka, K., and Williams, R.S.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4, 245 (2004).Google Scholar
Kim, J., Junkin, M., Kim, D.H., Kwon, S., Shin, Y.S., Wong, P.K., and Gale, B.K.: Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluid. 7, 149 (2009).CrossRefGoogle Scholar
Shao, M., Ma, D.D.D., and Lee, S.T.: Silicon nanowires- synthesis, properties, and application. Eur. J. Inorg. Chem. 27, 4264 (2010).Google Scholar
Lieber, C.M.: Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 36, 1052 (2011).Google Scholar
Yakimova, R., Petoral, R.M., Yazdi, G.R., Vahlberg, C., Lloyd Spetz, A., and Uvdal, K.: Surface functionalization and biomedical applications based on SiC. J. Phys. D: Appl. Phys. 40, 6435 (2007).Google Scholar
Petoral, R.M. Jr., Yazdi, G.R., Lloyd Spetz, A., Yakimova, R., and Uvdal, K.: Organosilane-functionalized wide-band-gap semiconductor surfaces. Appl. Phys. Lett. 99, 223904 (2007).CrossRefGoogle Scholar
Williams, E.H., Davydov, A.V., Motayed, A., Sundaresan, S.G., Bocchini, P., Richter, L.J., Stan, G., Steffens, K., Zangmeister, R., Schreifels, J.A., and Rao, M.V.: Immobilization of streptavidin on 4H-SiC for biosensor development. Appl. Surf. Sci. 16, 6056 (2012).CrossRefGoogle Scholar
Sioss, J.A., Stoermer, R.L., Sha, M.Y., and Keating, C.D.: Silica-coated, Au-/Ag-striped nanowires for bioanalysis. Langmuir 23, 11334 (2007).Google Scholar
Krylyuk, S., Davydov, A.V., and Levin, I.: Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 5(1), 65 (2011).Google Scholar
Krishnan, B., Venkatesh, R., Thirumalai, K.G., Koshka, Y., Sundaresan, S., Levin, I., Davydov, A.V., and Merrett, J.N.: Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst. Growth Des. 11, 538 (2011).Google Scholar
CasaXPS: Version 2.3.16, Dev. 54. http://www.casaxps.com/, Software for XPS data analysis, Casa Software Ltd. (2012). (accessed June 7, 2012).Google Scholar
Horcas, I., Fernández, R., Gómez-Rodriguez, G.M., Colchero, J., Gómez-Herrero, J., and Baro, A.M.: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).Google Scholar
ImageJ: Version 1.45. http://rsbweb.nih.gov/ij/index.html, Software for image analysis, NIH (2012). (accessed August 2, 2012).Google Scholar
Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R. Jr.: NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5. http://srdata.nist.gov/xps/Default.aspx (2007). (accessed July 30, 2012).Google Scholar
Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Ohwada, M.: Growth of native oxide on a silicon surface. J. Appl. Phys. 68(3), 1272 (1990).CrossRefGoogle Scholar
Beaux, M.F. II, Bridges, N.J., DeHart, M., Bitterwolf, T.E., and McIlroy, D.N.: X-ray photoelectron spectroscopic analysis of the surface chemistry of silica nanowires. Appl. Surf. Sci. 257, 5766 (2011).Google Scholar
Arranz, A., Palacio, D., Garcia-Fresnadillo, D., Orellana, G., Navarro, A., and Munoz, E.: Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization on GaN surface: An angle-resolved x-ray photoelectron spectroscopy study. Langmuir 24, 8667 (2008).Google Scholar
Vanderberg, E.T., Bertilsson, L., Liedberg, B., Uvdal, K., Erlandsson, R., Elwing, H., and Lundström, I.: Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloid Interface Sci. 147(1), 103 (1991).Google Scholar
Bierbaum, K.. Kinzler, M., Wöll, Ch., Grunze, M., Hähner, G., Heid, S., and Effenberger, F.: A near edge x-ray absorption fine structure spectroscopy and x-ray photoelectron spectroscopy study of thin film properties of self-assembled monolayers of organosilanes on oxidized Si(100). Langmuir 11, 512 (1995).Google Scholar
Ruiz-Taylor, L.A., Martin, T.L., and Wagner, P.: X-ray photoelectron spectroscopy and radiometry studies of biotin-derivatized poly(L-lysine)-grafted-poly(ethylene glycol) monolayers on metal oxides. Langmuir 17, 7317 (2001).CrossRefGoogle Scholar
Yang, Z., Xie, Z., Liu, H., Yan, F., and Ju, H.: Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater. 18, 3991 (2008).Google Scholar
Hijikata, Y., Yaguchi, H., Yoshikawa, M., and Yoshida, S.: Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope shaped oxide films. Appl. Surf. Sci. 184, 161 (2001).Google Scholar
Busiakiewicz, A., Huczko, A., Lange, H., Kowalczyk, P.J., Rogala, M., Kozlowski, W., Klusek, Z., Olejniczak, W., Polański, K., and Cudzilo, S.: Silicon carbide nanowires: Chemical characterization and morphology investigations. Phys. Status Solidi B 245(10), 2094 (2008).Google Scholar
Hornetz, B., Michel, J-J., and Halbritter, J.: ARXPS studies on SiO2-SiC interfaces and oxidation of 6H single crystal Si-(001) and C-(001) surfaces. J. Mater. Res. 9(12), 3088 (1994).Google Scholar
Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Qian, Y.T., Yu, W.C., Zhou, G.E., Liu, X.M., and Wu, J.X.: Synthesis and characterization of SiC nanowires through a reduction-carburization route. J. Phys. Chem. B 104, 5251 (2000).Google Scholar
Shen, G., Chen, D., Tang, K., Qian, Y., and Zhang, S.: Silicon carbide hollow nanospheres, nanowires, and coaxial nanowires. Chem. Phys. Lett. 375, 177 (2003).CrossRefGoogle Scholar
Amy, F. and Chabal, Y.J.: Interaction of H, O2, and H2O with 3C-SiC surfaces. J. Chem. Phys. 119(12), 6201 (2003).Google Scholar
Cicero, G., Gallo, G., and Catellani, A.: Interaction of water molecules with SiC(001) surfaces. J. Phys. Chem. B 108, 16518 (2004).Google Scholar
Righetti, P.G. and Tudor, G.: Isoelectric points and molecular weights of proteins: A new table. J. Chromatogr. A 220(2), 115 (1981).Google Scholar
Wang, Y., Qian, W., Tan, Y., and Ding, S.: A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Biosens. Bioelectron. 23, 1166 (2008).Google Scholar