Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.571 Render date: 2021-12-03T19:29:44.971Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition

Published online by Cambridge University Press:  31 January 2011

William J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, M.S. K2-44, Richland, Washington 99352
Rodney C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131
C. Austen Angell
Affiliation:
Department of Chemistry, Arizona State University, Tempe, Arizona 85287
George W. Arnold
Affiliation:
Consultants International, 11729 S Highway 14, Tijeras, New Mexico 87059
Alastair N. Cormack
Affiliation:
NYS College of Ceramics, Alfred University, Alfred, New York 14802
Jean Marc Delaye
Affiliation:
DTA/SRMP, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
David L. Griscom
Affiliation:
Naval Research Laboratory, Washington DC 20375
Linn W. Hobbs
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Alexandra Navrotsky
Affiliation:
Geological and Geophysical Sciences & Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
David L. Price
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
A. Marshall Stoneham
Affiliation:
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
Michael C. Weinberg
Affiliation:
Department of Material Science and Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

This paper is a comprehensive review of the state-of-knowledge in the field of radiation effects in glasses that are to be used for the immobilization of high-level nuclear waste and plutonium disposition. The current status and issues in the area of radiation damage processes, defect generation, microstructure development, theoretical methods and experimental methods are reviewed. Questions of fundamental and technological interest that offer opportunities for research are identified.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Closing the Circle on the Splitting of the Atom (U.S. Department of Energy, Office of Environmental Management, Washington, DC, 1995).Google Scholar
2.Management and Disposition of Excess Weapons Plutonium (National Academy Press, Washington, DC, 1994).Google Scholar
3.Management and Disposition of Excess Weapons Plutonium–Reactor-Related Options (National Academy Press, Washington, DC, 1995).Google Scholar
4.Wicks, G. G., Lodding, A. R., and Molecke, M. A., MRS Bull. XVIII (9), 33 (1993).Google Scholar
5.Jantzen, C. M., J. Am. Ceram. Soc. 75 (9), 2433 (1992).CrossRefGoogle Scholar
6.Grambow, B., MRS Bull. XIX (12), 20 (1994).CrossRefGoogle Scholar
7.Storage and Disposition of Weapons-Usable Fissile Materials Draft Programmatic Environmental Impact Statement, DOE/EIS-0229-D (U.S. Department of Energy, Washington, DC, 1996).Google Scholar
8.Defense Waste Processing Facility - Cost, Schedule, and Technical Issues, GAO/RCED 92-183 (U.S. General Accounting Office, Washington, DC, 1992).Google Scholar
9.Lutze, W., presented at the National Research Council Workshop on Glass as a Waste Form and Vitrification Technology, Washington, DC, May 13–15, 1996 (unpublished).Google Scholar
10.Cunnane, and Allison, J. M., in Scientific Basis for Nuclear Waste Management XVII, edited by Barkatt, A. and R. A. Van, Konynenburg (Mater. Res. Soc. Symp. Proc. 333, Pittsburgh, PA, 1994), p. 3.Google Scholar
11.Waste Form Compliance Plan for the West Valley Demonstration Project High-Level Waste Form, WVDP-185 (West Valley Demonstration Project, West Valley, NY, 1995).Google Scholar
12.Amerine, D. B., presented at the National Research Council Workshop on Glass as a Waste Form and Vitrification Technology, Washington, DC, May 13–15, 1996 (unpublished).Google Scholar
13.Illman, D. L., Chemical & Engineering News 71 (25), 9 (1993).CrossRefGoogle Scholar
14. Office of Technology Assessment, Complex Cleanup: The Environmental Legacy of Nuclear Weapons Production, OTA-O-484 (Congress of the United States, Washington, DC, 1991).Google Scholar
15.Disposal of Weapon Plutonium, edited by Merz, E. R. and Walter, C. E. (Kluwer Academic Publishers, The Netherlands, 1996).CrossRefGoogle Scholar
16.Makhijani, A. and Makhijani, A., Fissile Materials in a Glass, Darkly (IEER Press, Takoma Park, MD, 1995).Google Scholar
17.Browne, E., Dairiki, J. M., and Doebler, R. E., Table of Isotopes, edited by Lederer, C. M. and Sherley, V. S., 7th ed. (John Wiley and Sons, New York, 1978).Google Scholar
18.Taubes, G., Science 268, 1836 (1995).CrossRefGoogle Scholar
19.Bowman, C. D. and Venneri, F., Sci. Glob. Secur. 5, 279 (1996).CrossRefGoogle Scholar
20.Van Konynenburg, R. A., Sci. Glob. Secur. 5, 303 (1996).CrossRefGoogle Scholar
21.Bibler, N. E., Ramsey, W. G., Meaker, T. F., and Pareizs, J. M., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), p. 65.Google Scholar
22.Bates, J. K., Ellison, A. J. G., Emery, J. W., and Hoh, J. C., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), p. 57.Google Scholar
23.Matzke, Hj., Special issue for a workshop on Radiation Damage Effects in Nuclear Waste Materials, Nucl. Instrum. Methods in Phys. Res. B 32, 453 (1988).CrossRefGoogle Scholar
24.Weber, W. J., Mansur, L. K., Clinard, F. W., Jr., and Parkin, D. M., J. Nucl. Mater. 184, 1 (1991).CrossRefGoogle Scholar
25.Weber, W. J. and Roberts, F. P., Nucl. Technol. 60, 178 (1983).CrossRefGoogle Scholar
26.Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M., J. Nucl. Mater. 107, 245 (1982).CrossRefGoogle Scholar
27.Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M., in Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982), p. 339.Google Scholar
28.Day, D. H., Hughes, A. E., Leake, J. W., Marples, J. A. C., Marsh, G. P., Rae, J., and Wade, B. O., Rep. Prog. Phys. 48, 101 (1985).CrossRefGoogle Scholar
29.Weber, W. J., Nucl. Instrum. Methods in Phys. Res. B 32, 471 (1988).CrossRefGoogle Scholar
30.Weber, W. J., J. Minerals, Metals and Materials Sociery 43 (7), 35 (1991).CrossRefGoogle Scholar
31.Wronkiewicz, D. J., Effects of Radionuclide Decay on Waste Glass Behavior–A Critical Review, ANL-93/45 (Argonne National Laboratory, Argonne, IL, 1993).CrossRefGoogle Scholar
32.Ewing, R. C., Weber, W. J., and Clinard, F. W., Jr., Progress in Nuclear Energy 29 (2), 63 (1995).CrossRefGoogle Scholar
33.Weber, W. J. and Ewing, R. C., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R. C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 1389.Google Scholar
34.Weber, W. J., Ewing, R. C., and Lutze, W., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), p. 25.Google Scholar
35.Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (North-Holland, Amsterdam, 1988).Google Scholar
36.Ewing, R. C., J. Nucl. Mater. 190, vii (1992).CrossRefGoogle Scholar
37.Buscheck, T. A., Nitao, J. J., and Ramspott, L. D., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), p. 715.Google Scholar
38.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
39.Gray, W. J., Nature (London) 296, 547 (1982).CrossRefGoogle Scholar
40.Turcotte, R. P., Radiation Effects in Solidified High-Level Wastes–Part 2, Helium Behavior, BNWL-2051 (Pacific Northwest National Laboratory, Richland, WA, 1976).CrossRefGoogle Scholar
41.Sato, S., Furuya, H., Morikawa, K., Sugisaki, M., and Inagaki, Y., J. Nucl. Sci. and Technol. 27, 343 (1990).CrossRefGoogle Scholar
42.Todd, B. J., Lineweaver, J. L., and Kerr, J. T., J. Appl. Phys. 31, 51 (1960).CrossRefGoogle Scholar
43.Lineweaver, J. L., J. Appl. Phys. 34, 1786 (1963).CrossRefGoogle Scholar
44.Bibler, N. E., in Scientific Basis for Nuclear Waste Management, edited by Topp, S. V. (Mater. Res. Soc. Symp. Proc. 6, North-Holland, New York, 1982), p. 681.Google Scholar
45.Standard Method for Testing the Long Term Alpha Irradiation Stability of Solidified High-Level Radioactive Waste Forms, ISO 6962 (International Organization for Standardization, Geneva, Switzerland, 1982).Google Scholar
46.Nuclear Waste Materials Handbook, Test Methods, DOE/TIC-11400 (Pacific Northwest Laboratory, Richland, WA, 1981).Google Scholar
47.Weber, W. J., Wald, J. W., and McVay, G. L., J. Am. Ceram. Soc. 68 (9), C-253 (1985).CrossRefGoogle Scholar
48.Wagner, G. and van den Haute, P., Fission-Track Dating (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992).CrossRefGoogle Scholar
49.Eyal, Y. and Ewing, R. C., in Proceedings of the International Conference on Nuclear Waste Management and Environmental Remediation, Vol. 1, edited by Alexandre, D., Baker, R., Kohout, R., and Marek, J. (ASME Press, New York, 1993), p. 191.Google Scholar
50.Fleischer, R. L., Science, 207, 979 (1980).CrossRefGoogle Scholar
51.Arnold, G. W., Northrup, C. J. M., and Bibler, N. E., in Scientific Basis for Nuclear Waste Management-V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982), p. 357.Google Scholar
52.Malow, G. and Andresen, H., in Scientific Basis for Nuclear Waste Management, Vol. 1, edited by McCarthy, G. J. (Plenum Press, New York, 1979), p.109.CrossRefGoogle Scholar
53.Antonini, M., Lanza, F., and Manara, A., in Ceramics in Nuclear Waste Management, edited by Chikalla, T. D. and Mendel, J. E., CONF-790420 (National Technical Information Service, Springfield, VA, 1979), p. 289.Google Scholar
54.Curtiss, L. F., Nature (London) 120, 406 (1927).CrossRefGoogle Scholar
55.Lind, S. C., Science 68, 643 (1928).CrossRefGoogle Scholar
56.Tuck, D. G., Int. J. Appl. Radiat. Isotopes 15, 49 (1964).CrossRefGoogle Scholar
57.Lell, E., Kreidl, N. J., and Hensler, J. R., in Progress in Ceramic Science, Vol. 4, edited by Burke, J. (Pergamon Press, Oxford, New York, 1966), p. 1.Google Scholar
58.Griscom, D. L., in Glass: Science and Technology Vol. 4B, edited by Uhlmann, D. R. and Kreidl, N. J. (Academic Press, Boston, 1990), p. 151.Google Scholar
59.Clinard, F. W. Jr and Hobbs, L. W., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (Elsevier, Amsterdam, 1986), p. 387.CrossRefGoogle Scholar
60.Devine, R. A. B., Nucl. Instrum. Methods in Phys. Res. B 91, 378 (1994).CrossRefGoogle Scholar
61.Farges, F., Ewing, R. C., and Brown, G. E., Jr., J. Mater. Res. 8, 1983 (1993).CrossRefGoogle Scholar
62.Hobbs, L. W., J. Non-Cryst. Solids 192 & 193, 79 (1995).CrossRefGoogle Scholar
63.Wright, A. C., Bachra, B., Brunier, T. M., Sinclair, R. N., Gladden, L. F., and Portsmouth, R. L., J. Non-Cryst. Solids 150, 69 (1992).CrossRefGoogle Scholar
64.Hobbs, L. W., Nucl. Instrum. Methods in Phys. Res. B 91, 3042 (1994).CrossRefGoogle Scholar
65.Marians, C. S. and Hobbs, L. W., J. Non-Cryst. Solids 119, 269 (1990).CrossRefGoogle Scholar
66.Gladden, L. F., J. Non-Cryst. Solids 119, 318 (1990).CrossRefGoogle Scholar
67.Vashishta, P., Nakano, A., Kalia, R. K., and Ebbsjo, I., J. Non-Cryst. Solids 182, 59 (1995).CrossRefGoogle Scholar
68.Revesz, A. G. and Gibbs, G. V., in The Physics of MOS Insulators, edited by Lucovsky, G., Pantelides, S. T., and Galeener, F. L. (Pergamon, New York, 1980), p. 92.CrossRefGoogle Scholar
69.Marians, C. S. and Burdett, J. K., J. Non-Cryst. Solids 124, 1 (1990).CrossRefGoogle Scholar
70.Friebele, E. J., Griscom, D. L., Stapelbroek, M., and Weeks, R. A., Phys. Rev. Lett. 42, 1346 (1979).CrossRefGoogle Scholar
71.Hobbs, L. W. and Pascucci, M. R., J. Phys. 41 (C6), 237 (1980).Google Scholar
72.Wooten, F. and Weaire, D., J. Non-Cryst. Solids 64, 325 (1984).CrossRefGoogle Scholar
73.Jain, U., Powell, A. C., and Hobbs, L. W., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E., and Z., Lillental-Weber (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991), p. 201.Google Scholar
74.Jacobs, D. J. and Thorpe, M. F., Phys. Rev. E 52, 3682 (1996).Google Scholar
75.Gupta, P. K., J. Am. Ceram. Soc. 76, 1088 (1993).CrossRefGoogle Scholar
76.Greaves, G. N., J. Non-Cryst. Solids 71, 203 (1985).CrossRefGoogle Scholar
77.Sales, B. C., Ramey, J. O., McCallum, J. C., and Boatner, L. A., J. Non-Cryst. Solids 126, 179 (1990).CrossRefGoogle Scholar
78.Primak, W., Fuchs, L. H., and Day, P., Phys. Rev. 92, 1064 (1953).CrossRefGoogle Scholar
79.Primak, W., Phys. Rev. 110, 1240 (1958).CrossRefGoogle Scholar
80.Whittels, M. and Sherrill, F. A., Phys. Rev. 93, 1117 (1954).CrossRefGoogle Scholar
81.EerNisse, E. P., J. Appl. Phys. 45, 167 (1974).CrossRefGoogle Scholar
82.Presby, H. M. and Brown, W. L., Appl. Phys. Lett. 24, 511 (1974).CrossRefGoogle Scholar
83.Arnold, G. W., Radiat. Eff. 65, 17 (1982).CrossRefGoogle Scholar
84.Sato, S., Furuya, H., Inagaki, Y., Kozaka, T., and Sugisaki, M., J. Nucl. Sci. Technol. 24, 920 (1987).CrossRefGoogle Scholar
85.Sato, S., Furuya, H., Asakura, K., Ohta, K., and Tamai, T., Nucl. Instrum. Methods in Phys. Res. B 1, 534 (1984).CrossRefGoogle Scholar
86.Shelby, J. E., J. Appl. Phys. 51, 2561 (1980).CrossRefGoogle Scholar
87.Primak, W. and Kampwirth, R., J. Appl. Phys. 39, 6010 (1968).CrossRefGoogle Scholar
88.Norris, C. B. and EerNisse, E. P., J. Appl. Phys. 45, 3876 (1974).CrossRefGoogle Scholar
89.Arnold, G. W., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C. M., Stone, J. A., and Ewing, R. C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), p. 617.Google Scholar
90.Hiraiwa, A., Usui, H., and Yagi, K., Appl. Phys. Lett. 54, 1106 (1989).CrossRefGoogle Scholar
91.Antonini, M., Manara, A., and Buckley, S., Radiat. Eff. 65, 55 (1982).CrossRefGoogle Scholar
92.Antonini, M., Manara, A., and Lensi, P., in Physics of SiO2 and its Interfaces, edited by Pantiledes, S. T. (Pergamon, New York, 1978), p. 316.CrossRefGoogle Scholar
93.Devine, R. A. B. and Marchand, M., Appl. Phys. Lett. 63, 619 (1993).CrossRefGoogle Scholar
94.Fukumi, K., Chayahara, A., Satou, M., Hayakawa, M., Hangyo, M., and Nakashima, S., Jpn. J. Appl. Phys. 29, 905 (1990).CrossRefGoogle Scholar
95.Wright, A. C., J. Non-Cryst. Solids 179, 84 (1994).CrossRefGoogle Scholar
96.Weeks, R. A., J. Appl. Phys. 27, 1376 (1956).CrossRefGoogle Scholar
97.Weeks, R. A., Phys. Rev. 130, 570 (1963).CrossRefGoogle Scholar
98.Griscom, D. L., Nucl. Instrum. Methods in Phys. Res. B 1, 481 (1984).CrossRefGoogle Scholar
99.Feigl, F. J., Fowler, W. B., and Yip, K. L., Solid State Commun. 14, 225 (1974).CrossRefGoogle Scholar
100.Yip, K. W. and Fowler, W. B., Phys. Rev. B 11, 2327 (1975).CrossRefGoogle Scholar
101.Snyder, K. C. and Fowler, W. B., Phys. Rev. B 48, 13 238 (1993).CrossRefGoogle ScholarPubMed
102.Weeks, R. A., Proc. VII Intl. Cong. on Glass, Brussels, Paper No. 41 (1965).Google Scholar
103.Tohmon, R., Mizuno, H., Ohki, Y., Sasagane, K., Nagasawa, K., and Hama, Y., Phys. Rev. B 39, 1337 (1989).CrossRefGoogle Scholar
104.Imai, H., Arai, K., Hosono, H., Abe, Y., Arai, T., and Imagawa, H., Phys. Rev. B 44, 4812 (1991).CrossRefGoogle Scholar
105.Griscom, D. L., J. Ceram. Soc. Jpn. 99, 923 (1991).CrossRefGoogle Scholar
106.Amossov, A. V. and Rybaltovsky, A. O., J. Non-Cryst. Solids 75 (1994).Google Scholar
107.Griscom, D. L., in Proc. Thirty-Third Frequency Control Symposium (Electronics Industries Assn., Washington, DC, 1979), p. 109.Google Scholar
108.Hayes, W., Kane, M. J., Salimen, O., Wood, R. L., and Doherty, S. P., J. Phys. C: Solid State 17, 2943 (1984).CrossRefGoogle Scholar
109.Tsai, T. E. and Griscom, D. L., Phys. Rev. Lett. 67, 2517 (1991).CrossRefGoogle Scholar
110.Itoh, N., Shimizu-Iyayama, T., and Fujita, T., J. Non-Cryst. Solids 179, 194 (1994).CrossRefGoogle Scholar
111.Edwards, A. H. and Fowler, W. B., Phys. Rev. B 26, 6649 (1982).CrossRefGoogle Scholar
112.Pfeffer, R. L., in The Physics and Technology of Amorphous SiO2, edited by Devine, R. A. B. (Plenum Publishing, New York, 1988), p. 181.CrossRefGoogle Scholar
113.Pfeffer, R. L., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C. R. and Deal, B. E. (Plenum Press, New York, 1988), p. 169.CrossRefGoogle Scholar
114.Friebele, E. J., Griscom, D. L., Stapelbroek, M., and Weeks, R. A., Phys. Rev. Lett. 42, 1346 (1979).CrossRefGoogle Scholar
115.Stapelbroek, M., Griscom, D. L., Friebele, E. J., and Sigel, G. H., Jr., J. Non-Cryst. Solids 32, 313 (1979).CrossRefGoogle Scholar
116.Griscom, D. L., J. Non-Cryst. Solids 68, 301 (1984).CrossRefGoogle Scholar
117.Griscom, D. L., Sigel, G. H., Jr., and Ginther, R. J., J. Appl. Phys. 47, 960 (1976).CrossRefGoogle Scholar
118.Friebele, E. J. and Griscom, D. L., in Defects in Glasses, edited by Galeener, F. L., Griscom, D. L., and Weber, M. J. (Mater. Res. Soc. Symp. Proc. 61, Pittsburgh, PA, 1986), p. 319.Google Scholar
119.Griscom, D. L., Friebele, E. J., Long, K. J., and Fleming, J. W., J. Appl. Phys. 54, 3743 (1983).CrossRefGoogle Scholar
120.Arnold, G. W., Radiat. Eff. 98, 55 (1986).CrossRefGoogle Scholar
121.Arnold, G. W., Nucl. Instrum. Methods in Phys. Res. B 1, 516 (1984).CrossRefGoogle Scholar
122.Battaglin, G., Mea, G. Della, De Marchi, G., Mazzoldi, P., and Puglisi, O., J. Non-Cryst. Solids 50, 119 (1982).CrossRefGoogle Scholar
123.Battaglin, G. Della, Mea, G., De Marchi, G., Mazzoldi, P., and Puglisi, O., Radiat. Eff. 64, 99 (1982).CrossRefGoogle Scholar
124.DeNatale, J. F., Howitt, D. G., and Arnold, G. W., Radiat. Eff. 98, 63 (1986).CrossRefGoogle Scholar
125.Schreurs, J. W. H., J. Chem. Phys. 47, 818 (1967).CrossRefGoogle Scholar
126.Griscom, D. L., J. Non-Cryst. Solids 64, 229 (1984).CrossRefGoogle Scholar
127.Cases, R. and Griscom, D. L., Nucl. Instrum. Methods in Phys. Res. B 1, 503 (1984).CrossRefGoogle Scholar
128.Cases, R. and Griscom, D. L., in Proc. XVI Int'l Cong. Glass, Vol. 3, Glass Structure (1992), p. 53.Google Scholar
129.Griscom, D. L., J. Non-Cryst. Solids 6, 275 (1971).CrossRefGoogle Scholar
130.Levy, P. W., Loman, J. M., and Kierstead, J. A., Nucl. Instrum. Methods in Phys. Res. B 1, 549 (1984).CrossRefGoogle Scholar
131.Vannerberg, N-G., in Progress in Inorganic Chemistry 4 (1962), p. 125.Google Scholar
132.DeNatale, J. F. and Howitt, D. G., Am. Ceram. Soc. Bull. 61, 582 (1982).Google Scholar
133.DeNatale, J. F. and Howitt, D. G., Nucl. Instrum. Methods in Phys. Res. B 1, 489 (1984).CrossRefGoogle Scholar
134.Heuer, J. P., Chan, H. W., Howitt, D. G., and DeNatale, J. F., in NuclearWaste Management II, edited by Clark, D. E., White, W. B., and Machiels, J. J. (Advances in Ceramics 20, The American Ceramic Society, Westerville, OH, 1986), p. 175.Google Scholar
135.Manara, A., Antonini, M., Camagni, P., and Gibson, P. N., Nucl. Instrum. Methods in Phys. Res. B 1, 475 (1984).CrossRefGoogle Scholar
136.Adams, P. B. and Evans, D. L., Mater. Res. Sci. 12, 525 (1978).Google Scholar
137.Snoeks, E., Weber, T., Cacciato, A., and Polman, A., unpublished.Google Scholar
138.Snoeks, E., Ph.D. Thesis, Utrecht University (1995).Google Scholar
139.Arnold, G. W., Nucl. Instrum. Methods in Phys. Res. B 32, 504 (1988).CrossRefGoogle Scholar
140.Klaumünzer, S., Radiat. Eff. 110, 78 (1989).CrossRefGoogle Scholar
141.Benyagoub, A., Löffler, S., Rammansee, M., and Klaumünzer, S., Nucl. Instrum. Methods in Phys. Res. B 65, 228 (1992).CrossRefGoogle Scholar
142.Griscom, D. L., in Experimental Techniques of Glass Science, edited by O., El-Bayoumi and Simmons, C. J. (The American Ceramic Society, Westerville, OH, 1993), p. 161.Google Scholar
143.Griscom, D. L., J. Chem. Phys. 55, 1113 (1971).CrossRefGoogle Scholar
144.Marples, J. A. C., Nucl. Instrum. Methods in Phys. Res. B 32, 480 (1988).CrossRefGoogle Scholar
145.Inagaki, Y., Furuya, H., Idemitsu, K., Banba, T., Matsumoto, S., and Muraoka, S., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C. G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, PA, 1992), p. 199.Google Scholar
146.Banba, T., Matsumoto, S., Muraoka, S., Yamada, K., Saito, M., Ishikawa, H., and Sasaki, N., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R. C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 1397.Google Scholar
147.Antonini, M., Camagni, P., Lanza, F., and Manara, A., in Scientific Basis for Nuclear Waste Management-2, edited by Northrup, C. J. M. Jr (Plenum Press, New York, 1980), p. 127.CrossRefGoogle Scholar
148.Sato, S., Furuya, H., Kozaka, T., Inagaki, Y., and Tamai, T., J. Nucl. Mater. 152, 265 (1988).CrossRefGoogle Scholar
149.Manara, A., Gibson, P. N., and Antonini, M., in Scientific Basis for Nuclear Waste Management-V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, North-Holland, New York, 1982), p. 349.Google Scholar
150.Stoneham, A. M., Nucl. Instrum. Methods in Phys. Res. B 91, 1 (1994).CrossRefGoogle Scholar
151.Roberts, F. P., Jenks, G. H., and Bopp, C. D., Radiation Effects in Solidified High-LevelWastes–Part 1, Stored Energy, BNWL-1944 (Pacific Northwest National Laboratory, Richland, WA, 1976).CrossRefGoogle Scholar
152.Hall, A. R., Dalton, J. T., Hudson, B., and Marples, J. A. C., in Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. II, IAEA-SM-207 (International Atomic Energy Agency, Vienna, 1976), p. 3.Google Scholar
153.Malow, G., Marples, J. A. C., and Sombret, C., in Radioactive Waste Management and Disposal, edited by Simon, R. and Orlowski, S. (Harwood Academic Publishers, Chur, Switzerland, 1980), p. 341.Google Scholar
154., A.K., Luckscheiter, B., Lutze, W., Malow, G., and Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).Google Scholar
155.DeNatale, J. F. and Howitt, D. G., Radiat. Eff. 91, 89 (1985).CrossRefGoogle Scholar
156.Weber, W. J., Turcotte, R. P., Bunnell, L. R., Roberts, F. P., and Westsik, J. H., in Ceramics in Nuclear Waste Management, edited by Chikalla, T. D. and Mendel, J. E., CONF-790420 (National Technical Information Service, Springfield, VA, 1979), p. 294.Google Scholar
157.Sato, S., Asakura, K., and Furuya, H., Nucl. Chem. Waste Management 4, 147 (1983).CrossRefGoogle Scholar
158.DeNatale, J. F. and Howitt, D. G., Am. Ceram. Soc. Bull. 66, 1393 (1987).Google Scholar
159.Heuer, J. P., Thesis, M. S., Department of Mechanical Engineering, University of California–Davis 1987.Google Scholar
160.Howitt, D. G., Chan, H. W., DeNatale, J. F., and Heuer, J. P., J. Am. Ceram. Soc. 74, 1145 (1991).CrossRefGoogle Scholar
161.Tosten, M. H., TEM examination of irradiated waste glass, WSRCRP 89-584 (Westinghouse Savannah River Co., Aiken, SC, 1989).Google Scholar
162.Bibler, N. E., Tosten, M. H., and Beam, D. C., in High-Level Radioactive Waste Management, Vol. 2 (American Nuclear Society, La Grange Park, IL, 1990), p. 1103.Google Scholar
163.Laval, J. Y. and Westmacott, K. H., in Electron Microscopy and Analysis, 1979, edited by Mulvey, T., Conference Series, No. 52 (Institute of Physics, London, 1980), p. 295.Google Scholar
164.Inagaki, Y., Furuya, H., Ono, Y., Idemitsu, K., Banba, T., Matsumoto, S., and Muraoka, S., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, C. G. and Pabalan, R. T. (Mater. Res. Soc. Symp. Proc. 294, Pittsburgh, PA, 1993), p. 191.Google Scholar
165.Matzke, Hj. and Toscano, E., Europ. Appl. Res. Rep. 7 (9), 1403 (1990).Google Scholar
166.Matzke, Hj. and Vernaz, E., J. Nucl. Mater. 201, 295 (1993).CrossRefGoogle Scholar
167.Matzke, Hj. and van Geel, J., in Disposal of Weapons Plutonium, edited by Merz, E. R. and Walter, C. E. (Kluwer Academic Publishers The Netherlands, 1996), p. 93.CrossRefGoogle Scholar
168.Bonniaud, R. A., Francillon, N. R. Jacquet, Laude, R. L., and Sombret, C. G., in Ceramics in Nuclear Waste Management, edited by Chikalla, T. D. and Mendel, J. E., CONF-790420 (National Technical Information Service, Springfield, VA, 1979), p. 57.Google Scholar
169.Routbort, J. L. and Matzke, Hj., Mater. Sci. and Eng. 58, 229 (1983).CrossRefGoogle Scholar
170.Weber, W. J. and Matzke, Hj., Europ. Appl. Res. Rep. 7 (7), 1221 (1987).Google Scholar
171.Yamashita, M. and Matzke, Hj., in Modifications Induced by Irradiation in Glasses, edited by Mazzoldi, P. (Elsevier Science, Amsterdam, 1992), p. 53.CrossRefGoogle Scholar
172.Ray, I. L. F. and Matzke, Hj., unpublished results.Google Scholar
173.Turcotte, R. P., Radioactive Waste Management 2, 169 (1981).Google Scholar
174.Dran, J. C., Langevin, Y., Maurette, M., Petit, J. C., and Vassent, B., in Scientific Basis for Nuclear Waste Management, edited by Topp, S. V. (Mater. Res. Soc. Symp. Proc. 6, North-Holland, New York, 1982), p. 651.Google Scholar
175.Primak, W., Nucl. Sci. Engr. 80, 689 (1982).CrossRefGoogle Scholar
176.Cousens, D. R. and Myhra, S., J. Non-Cryst. Solids 54, 345 (1983).CrossRefGoogle Scholar
177.Grover, J. R. and Chidley, B. E., Reactor Science and Technology (J. Nucl. Energy Parts A/B) 16, 405 (1962).CrossRefGoogle Scholar
178.Grover, J.R., in Management of Radioactive Wastes from Fuel Reprocessing (Organisation for Economic Co-Operation and Development, Paris, 1973), p. 593.Google Scholar
179.Westsik, J. H. and Harvey, C. O., High-Temperature Leaching of a Simulated High-Level Waste Glass, PNL-3172 (Pacific Northwest Laboratory, Richland, WA, 1981).Google Scholar
180.Eyal, Y. and Fleischer, R. L., Geochimica et Cosmochimica Acta 49, 1155 (1985).CrossRefGoogle Scholar
181.Olander, D. R. and Eyal, Y., Geochimica et Cosmochimca Acta 54, 1889 (1990).CrossRefGoogle Scholar
182.Ellison, A. J. G. and Navrotsky, A., J. Am. Ceram. Soc. 75, 1430 (1992).CrossRefGoogle Scholar
183.Ellison, A. J. G. and Hess, P. C., J. Non-Cryst. Solids 127, 247 (1991).CrossRefGoogle Scholar
184.Calemezuk, R. and Bonjour, E., J. Non-Cryst. Solids 43, 427 (1981).CrossRefGoogle Scholar
185.Navrotsky, A., Transaction ACA 27, 1 (1991).Google Scholar
186.Susman, S., Volin, K. J., Liebermann, R. C., Gwanmesia, G., and Wang, Y., Phys. Chem. Glasses 31, 144 (1990).Google Scholar
187.Hemley, R. J., Mao, K. K., Bell, P. M., and Mysen, B. O., Phys. Rev. Lett. 57, 747 (1986).CrossRefGoogle Scholar
188.Stolen, R. H., Krause, J. T., and Kurkijan, C. R., Discuss. Faraday Soc. 50, 103 (1970).CrossRefGoogle Scholar
189.Griscom, D. L., SPIE 541, 38 (1985).Google Scholar
190.Arnold, G. W. and Compton, W. D., Phys. Rev. 116, 802 (1959).CrossRefGoogle Scholar
191.Pfeffer, R. L., J. Appl. Phys. 57, 5176 (1985).CrossRefGoogle Scholar
192.Arnold, G. W. and Mazzoldi, P., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987), Chap. 5.Google Scholar
193.Mazzoldi, P. and Miotello, A., Radiat. Eff. 98, 205 (1986).CrossRefGoogle Scholar
194.Miotello, A. and Mazzoldi, P., J. Phys. C: Solid State Phys. 15, 5615 (1982).CrossRefGoogle Scholar
195.Miotello, A., Phys. Lett. 103A, 279 (1984).CrossRefGoogle Scholar
196.Weber, W. J., Ewing, R. C., and Wang, L. M., J. Mater. Res. 9, 688 (1994).CrossRefGoogle Scholar
197.James, P. F., J. Mater. Sci. 10, 1802 (1975).CrossRefGoogle Scholar
198.Phase Separation in Glass, edited by Mazurin, O. V. and PoraiKoshits, E. A. (North-Holland, Amsterdam, 1984).Google Scholar
199.Taylor, P., Atomic Energy of Canada Limited Report, AECL-10173, August, 1980.Google Scholar
200.Haller, W., Blackburn, D. H., Wagstaff, F. E., and Charles, R. J., J. Am. Ceram. Soc. 53, 34 (1970).CrossRefGoogle Scholar
201.Fudali, R. F., Dayar, M. D., Griscom, D. L., and Schreiber, H. D., Geochim. Cosmochim. Acta 51, 2749 (1987).CrossRefGoogle Scholar
202.Chiang, Y-M. and Kingery, W. D., J. Am. Ceram. Soc. 66, C171 (1983).CrossRefGoogle Scholar
203.Sreeram, A. N. and Hobbs, L. W., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L. R., Herbots, N., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 559; A. N. Sreeram, Sc.D. Thesis, MIT (1995).Google Scholar
204.Spilman, D. B., Hench, L. L., and Clark, D. E., Nucl. Chem. Waste Management 6, 107 (1986).CrossRefGoogle Scholar
205.Hobbs, L. W., Clinard, F. W. Jr, Zinkle, S. J., and Ewing, R. C., J. Nucl. Mater. 216, 291 (1994).CrossRefGoogle Scholar
206.Yu, J., Sommer, W. F., and Bradbury, J. N., J. Nucl. Mater. 141–143, 65 (1986); J. Yu, W. F. Sommer, J. N. Bradbury, W. V. Green, and M. Victoria, J. Nucl. Mater. 227, 266 (1996).Google Scholar
207.Hobbs, L. W., in Quantitative Electron Microscopy, edited by Chapman, J. N. and Craven, A. J. (Scottish Universities Summer Schools in Physics Publ., Edinburgh, 1984), p. 399; Scanning Microscopy, Suppl. 4, 171 (1990).Google Scholar
208.Catlow, C. R. A., Diller, K. M., and Hobbs, L. W., Philos. Mag. 42, 123 (1980).CrossRefGoogle Scholar
209.Hobbs, L. W., J. Phys. 37 (C7), 3 (1976).Google Scholar
210.Computer Simulation of Radiation Effects in Solids, edited by T., Diaz de la Rubia, G.H., Gilmer, and M-J., Caturla (North Holland, Amsterdam, 1995).Google Scholar
211.Adams, J. B., Rockett, A., Kieffer, J., Xu, W., Nomura, M., Kiliam, K. A., Richards, D. F., and Ramprasad, R., J. Nucl. Mater. 216, 265 (1994).CrossRefGoogle Scholar
212.Mattila, T., Nieminen, R. M., and Dzugutov, M., Nucl. Instrum. Methods in Phys. Res. B 102, 119 (1995).CrossRefGoogle Scholar
213.Doan, N. V., Philos. Mag. A49, 683 (1984).CrossRefGoogle Scholar
214.Valle, R. G. Della and Andersen, H. C., J. Chem. Phys. 97, 2682 (1992).CrossRefGoogle Scholar
215.Cormier, G., Peres, T., and Capobianco, J. A., J. Non-Cryst. Solids 195, 125, (1996).CrossRefGoogle Scholar
216.Vessal, B., Wright, A. C., and Hannon, A. C., J. Non-Cryst. Solids 196, 233 (1996).CrossRefGoogle Scholar
217.Cormack, A. N. and Cao, Y., Mol. Eng. (1996), in press.Google Scholar
218.Delaye, J. M. and Ghaleb, D., J. Non-Cryst. Solids 195, 239 (1996).CrossRefGoogle Scholar
219.Delaye, J. M. and Ghaleb, D., Mater. Sci. Eng. B37, 232 (1996).CrossRefGoogle Scholar
220.Delaye, J. M., presented at this panel meeting (unpublished).Google Scholar
221.Delaye, J. M. and Ghaleb, D., J. Nucl. Mater. (in press).Google Scholar
222.Delaye, J. M. and Ghaleb, D., in Proc. of the Third International Conference on Computer Simulations of Radiation Effects in Solids, University of Surrey, Guildford, UK, July 22–26, 1996.Google Scholar
223.Wicks, J. D. and McGreevy, R. L, J. Non-Cryst. Solids 192/193, 23 (1995).CrossRefGoogle Scholar
224.Wicks, J. D., Börjesson, L., Bushnell-Wye, G., Howells, W. S., and McGreevy, R. L., Phys. Rev. Lett. 74, 726 (1995).CrossRefGoogle Scholar
225.Park, J-G. and Cormack, A. N., Philos. Mag. B 73, 21 (1996).CrossRefGoogle Scholar
226.Brailsford, A. D. and Bullough, R., J. Nucl. Mater. 44, 121 (1972).CrossRefGoogle Scholar
227.Jain, U. and Lidiard, A. B., Philos. Mag. 35, 245 (1977).CrossRefGoogle Scholar
228.Yu, N., Nastasi, M., Levine, T. E., Tesmer, J. R., Hollander, M. G., Evans, C. R., and Maggiore, C. J., Nucl. Instrum. Methods in Phys. Res. B 99, 566 (1995).CrossRefGoogle Scholar
229.Allen, C. W., Funk, L. L., Ryan, E. A., and Taylor, A., Nucl. Instrum. Methods in Phys. Res. B 40/41, 553 (1989).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *