Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T05:01:43.507Z Has data issue: false hasContentIssue false

A plastic damage model for finite element analysis of cracking of silicon under indentation

Published online by Cambridge University Press:  31 January 2011

Haibo Wan
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Yao Shen*
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Qiulong Chen
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Youxing Chen
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
*
a)Address all correspondence to this author. e-mail: yaoshen@sjtu.edu.cn
Get access

Abstract

A modified plastic damage model that accounts for tensile damage and compressive plasticity as well as interactions among them is adopted to simulate the indentation-induced cracking of silicon under Berkovich, cube corner, and Vickers indenters. Simulations with this model capture not only the well-known cracking geometries in indented ceramics, such as radial, median, lateral, and half penny (Vickers indenter) cracks, but also the recent experimentally discovered quarter penny cracks under Berkovich and cube corner pyramidal indenters. The quarter penny cracks are found to be formed by the coalescence of radial and median cracks for the first time in the simulation. Loads at which radial and half penny cracks are initiated in silicon are generally close to the experimental values reported in the literature, and the crack lengths on the sample surface agree well with both the current experimental measurements and analytical results by fracture mechanics.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Petersen, K.E.: Silicon as a mechanical material. Proc. IEEE 70, 420 (1982)CrossRefGoogle Scholar
2.Cook, R.F.: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841 (2006)CrossRefGoogle Scholar
3.Johansson, S., Schweitz, J.A.: Contact damage in single-crystalline silicon investigated by cross-sectional transmission electron microscopy. J. Am. Ceram. Soc. 71, 617 (1988)CrossRefGoogle Scholar
4.Lawn, B.R., Marshall, D.B., Chantikul, P.: Mechanics of strength-degrading contact flaws in silicon. J. Mater. Sci. 16, 1769 (1981)CrossRefGoogle Scholar
5.Walls, M.G., Chaudhri, M.M., Tang, T.B.: STM profilometry of low-load Vickers indentations in a silicon crystal. J. Phys. D: Appl. Phys. 25, 500 (1992)CrossRefGoogle Scholar
6.Bradby, J.E., Williams, J.S., Wong-Leung, J.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001)CrossRefGoogle Scholar
7.Saka, H., Shimantani, A., Suganuma, M., Suprijadi, M.: Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos. Mag. A 82, 1971 (2002)CrossRefGoogle Scholar
8.Lawn, B.R.: Hertzian fracture in single crystals with the diamond. J. Appl. Phys. 39, 4828 (1968)CrossRefGoogle Scholar
9.Mann, A.B., van Heerden, D., Pethica, J.B., Weihs, T.P.: The transformation of Si under point contacts. J. Mater. Res. 15, 1754 (2000)CrossRefGoogle Scholar
10.Zhang, L., Zarudi, I.: Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43, 1985 (2001)CrossRefGoogle Scholar
11.Minor, A.M., Lilleodden, E.T., Jin, M., Stach, E.A., Chrzan, D.C., Morris, J.W.: Room temperature dislocation plasticity in silicon. Philos. Mag. 85, 323 (2005)CrossRefGoogle Scholar
12.Lawn, B.R., Evans, A.G.: A model for crack initiation in elastic/plastic indentation fields. J. Mater. Sci. 12, 2195 (1977)CrossRefGoogle Scholar
13.Lawn, B.R., Evans, A.G., Marshall, D.B.: Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63, 574 (1980)CrossRefGoogle Scholar
14.Chiang, S.S., Marshall, D.B., Evans, A.G.: The response of solids to elastic/plastic indentation. I. Stress and residual stresses. J. Appl. Phys. 53, 298 (1982)CrossRefGoogle Scholar
15.Chiang, S.S., Marshall, D.B., Evans, A.G.: The response of solids to elastic/plastic indentation. II. Stress and residual stresses. J. Appl. Phys. 53, 312 (1982)CrossRefGoogle Scholar
16.Yoff, E.H.: Elastic stress fields caused by indenting brittle materials. Philos. Mag. A 46, 617 (1982)CrossRefGoogle Scholar
17.Zeng, K., Giannakopoulos, A.E., Rowcliffe, D.J.: Vickers indentations in glass. II. Comparison of finite element analysis and experiments. Acta Metall. Mater. 41, 1945 (1995)CrossRefGoogle Scholar
18.Zhang, W., Subhash, G.: An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials. Int. J. Solids Struct. 38, 5893 (2001)CrossRefGoogle Scholar
19.Muchtar, A., Lim, L.C., Lee, K.H.: Finite element analysis of Vickers indentation cracking processes in brittle solids using elements exhibiting cohesive post-failure behavior. J. Mater. Sci. 38, 235 (2003)CrossRefGoogle Scholar
20.Yan, J., Karlsson, A.M., Chen, X.: On internal cone cracks induced by conical indentation in brittle materials. Eng. Fract. Mech. 74, 2535 (2007)CrossRefGoogle Scholar
21.Yonezu, A., Xu, B., Chen, X.: Indentation induced lateral crack in ceramics with surface hardening. Mater. Sci. Eng., A 507, 226 (2009)CrossRefGoogle Scholar
22.Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679 (1994)CrossRefGoogle Scholar
23.Larsson, P.L., Giannakopoulos, A.E.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996)CrossRefGoogle Scholar
24.Zarudi, I., Zhang, L.C., Cheong, W.C.D., Yu, T.X.: The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater. 53, 479 (2005)CrossRefGoogle Scholar
25.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V.: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000)CrossRefGoogle Scholar
26.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., Swain, M.V.: Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14, 2338 (1999)CrossRefGoogle Scholar
27.Zhang, L., Mahdi, M.: The plastic behavior of silicon subjected to micro-indentation. J. Mater. Sci. 31, 5671 (1996)CrossRefGoogle Scholar
28.Giannakopoulos, A.E., Larsson, P.L.: Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics. Mech. Mater. 25, 1 (1997)CrossRefGoogle Scholar
29.Larsson, P.L., Giannakopoulos, A.E.: Tensile stresses and their implication to cracking at pyramid indentation of pressure-sensitive hard metals and ceramics. Mater. Sci. Eng., A 245, 268 (1998)CrossRefGoogle Scholar
30.ABAQUS Analysis User's Manual Version 6.7 (SIMULIA, Providence, RI 2007)Google Scholar
31.Lee, J., Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124, 892 (1998)Google Scholar
32.Lubiner, J., Oliver, J., Oller, S., Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25, 299 (1989)CrossRefGoogle Scholar
33.Lemaitre, J.: A Course on Damage Mechanics 2nd ed (Springer, Berlin 1996)CrossRefGoogle Scholar
34.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
35.Guckel, H.: Silicon microsensors: Construction, design and performance. Microelectron. Eng. 15, 387 (1991)CrossRefGoogle Scholar
36.Jang, J.I., Pharr, G.M.: Influence of indenter angle on cracking in Si and Ge during nanoindentation. Acta Mater. 56, 4458 (2008)CrossRefGoogle Scholar
37.Tsai, Y.L., Mecholsky, J.J.: Fractal fracture of single crystal silicon. J. Mater. Res. 6, 1248 (1991)CrossRefGoogle Scholar
38.Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S., Heuer, A.H.: The fracture toughness of polysilicon microdevices: A first report. J. Mater. Res. 12, 915 (1997)CrossRefGoogle Scholar
39.Fitzgerald, A.M., Daukardt, R.H., Kenny, T.W.: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens. Actuators, A 83, 194 (1992)CrossRefGoogle Scholar
40.Tsai, M.Y., Chen, C.H.: Evaluation of test methods for silicon die strength. Microelectron. Reliab. 48, 933 (2008)CrossRefGoogle Scholar
41.Geng, L., Shen, Y., Wagoner, R.H.: Anisotropic hardening equations derived from reverse-bend testing. Int. J. Plast. 18, 743 (2002)CrossRefGoogle Scholar
42.Shim, S., Jang, J., Pharr, G.M.: Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation. Acta Mater. 56, 3824 (2008)CrossRefGoogle Scholar
43.Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications 2nd ed (CRC Press, Boca Raton, FL 1995)Google Scholar
44.Hillerborgm, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773 (1976)CrossRefGoogle Scholar
45.Muchtar, A., Lim, L.C.: Indentation fracture toughness of high purity submicron alumina. Acta Mater. 46, 1683 (1998)CrossRefGoogle Scholar
46.Cook, R.F., Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990)CrossRefGoogle Scholar
47.Carlsson, S., Biwa, S., Larsson, P-L.: On frictional effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42, 107 (2000)CrossRefGoogle Scholar
48.Hagan, J.T.: Cone cracks around Vickers indentation in fused silica glass. J. Mater. Sci. 14, 462 (1979)CrossRefGoogle Scholar
49.Kailer, A., Gogotsi, Y.G., Nickel, K.G.: Phase transformation of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997)CrossRefGoogle Scholar
50.Kese, K., Rowcliffe, D.J.: Nanoindentation method for measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86, 811 (2003)CrossRefGoogle Scholar
51.Tandon, R.: A technique for measuring stresses in small spatial regions using cube-corner indentation: Application to tempered glass plates. J. Eur. Ceram. Soc. 27, 2407 (2007)CrossRefGoogle Scholar
52.Ostojic, P., Phersom, R.M.: A review of indentation fracture theory: Its developments, principles and limitations. Int. J. Fract. 33, 297 (1987)CrossRefGoogle Scholar
53.Dukino, R.D., Swain, M.V.: Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters. J. Am. Ceram. Soc. 75, 3299 (1992)CrossRefGoogle Scholar
54.Pharr, G.M.: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253, 151 (1998)CrossRefGoogle Scholar
55.Marshall, D.B., Lawn, B.R.: Residual stress effects in sharp contact cracking: I. J. Mater. Sci. 14, 200 (1979)CrossRefGoogle Scholar
56.Marshall, D.B., Lawn, B.R.: Residual stress effects in sharp contact cracking: II. J. Mater. Sci. 14, 2225 (1979)CrossRefGoogle Scholar
57.Harding, D.S.: Cracking in brittle materials during low-load indentation and its relation to fracture toughness. Ph.D. Dissertation, Rice University, Houston, TX 1995Google Scholar
58.Wen, S., Bentley, J., Jang, J., Pharr, G.M.: Cross sectional TEM studies of indentation-induced phase transformation in Si: Indenter angle effects, Fundamentals of Nanoindentation and Nanotribology IIIedited by K.J. Wahl, N. Huber, A.B. Mann,D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc 841, Warrendale, PA 2005) R10.4Google Scholar
59.Wu, Y.Q., Yang, X.Y., Xu, Y.B.: An HREM study of a lateral microcrack beneath indentation of [001] silicon. Acta Metall. Sinica 11, 342 (1998)Google Scholar
60.Pajares, A., Chumakow, M., Lawn, B.R.: Strength of silicon containing nanoscale flaws. J. Mater. Res. 19, 657 (2004)CrossRefGoogle Scholar
61.Jian, S-R.: Mechanical deformation induced in Si and GaN under Berkovich nanoindentation. Nanoscale Res. Lett. 3, 6 (2008)CrossRefGoogle Scholar
62.Yan, J., Takahashi, H., Gai, X., Harada, H., Tamaki, J., Kuriyagawa, T.: Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng., A 423, 19 (2006)CrossRefGoogle Scholar
63.Lloyd, S.J., Molina-Aldareguia, J.M., Clegg, J.W.: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16, 3347 (2001)CrossRefGoogle Scholar
64.Lankford, J., Davidson, D.L.: The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation. J. Mater. Sci. 14, 1662 (1979)CrossRefGoogle Scholar
65.Sata, T., Takamoto, K., Yoshikawa, H.: Ultra-micro indentation hardness tester. Bull. Jap. Prec. Eng. 13, 13 (1969)Google Scholar
66.Vodenitcharova, T., Zhang, L.C.: A new constitutive model for the phase transformations in mono-crystalline silicon. Int. J. Solids Struct. 40, 2989 (2003).CrossRefGoogle Scholar