Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-mdtzd Total loading time: 0.217 Render date: 2021-10-16T21:39:38.612Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods

Published online by Cambridge University Press:  31 January 2011

Andrea Siska
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Zoltán Kónya
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Klára Hernádi
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Imre Kiricsi
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Krisztián Kordás
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
Róbert Vajtai
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
Get access

Abstract

Chemical vapor deposition of carbon nanotubes by catalytic decomposition of acetylene on V2O5 microtube crystals is presented. The catalyst was prepared by laser irradiation of vanadium sheets and treated with cobalt acetate solution. The carbon deposits generated on this novel type of catalyst were characterized by transmission electron microscopy measurements. Both carbon nanofibers and carbon nanotubes were found to be formed. This catalyst system, generated by the combined laser irradiation and chemical impregnation methods, is a new and promising way to study the differences in the mechanism of the generation of nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chambers, A., Park, C., Baker, R.T.K, and Rodrigez, N.M., J. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
2. Wang, Q. and Johnson, J.K., J. Phys. Chem. B 103, 277 (1999).CrossRefGoogle Scholar
3. Chu, A., Cook, J., Heesom, R.J.R, Hutchison, J.L., Green, M.L.H, and Sloan, J., Chem. Mater. 8, 2751 (1996).CrossRefGoogle Scholar
4. Pradhan, B.K., Kyotani, T., and Tomita, A., Chem. Commun. (14), 1317 (1999).CrossRefGoogle Scholar
5. Sloan, J., Wright, D.M., Woo, H-G., Bailey, S., Browa, G., York, A.P.E, Coleman, K.S., Hutchinson, J.L., and Green, M.L.H, Chem. Commun. (8), 699 (1999).CrossRefGoogle Scholar
6. Kiang, C.H., Choi, J-S., Tran, T.T., and Bacher, A.D., J. Phys. Chem. B 103, 7449 (1999).CrossRefGoogle Scholar
7. Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
8. Yoshida, Y., Appl. Phys. Lett. 22, 64 (1994).Google Scholar
9. Tsang, S.C., Chen, Y.K., Harris, P.J.F, and Green, M.L.H, Nature 372, 159 (1994).CrossRefGoogle Scholar
10. Avouris, Ph., Hertel, T., Martel, R., Schmidt, T., Shea, H.R., and Walkup, R.E., Appl. Surf. Sci. 141, 201 (1999).CrossRefGoogle Scholar
11. Campbell, J.K., Sun, L., and Crooks, R.M., J. Am. Chem. Soc. 121, 3779 (1999).CrossRefGoogle Scholar
12. Hu, J., Ouyang, M., Yang, P., and Lieber, C.M., Nature 399, 48 (1999).CrossRefGoogle Scholar
13. Ajayan, P.M., Chem. Rev. 99, 1787 (1999).CrossRefGoogle Scholar
14. Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
15. Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y., and Wang, G., Chem. Phys. Lett. 299, 97 (1999).CrossRefGoogle Scholar
16. Kyotani, T., Tsai, L-F., and Timita, A., Chem. Mater. 7, 1427 (1995).CrossRefGoogle Scholar
17. Cassel, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J., and Dai, H., J. Am. Chem. Soc. 121, 7975 (1999).CrossRefGoogle Scholar
18. Huang, S., Dai, L., and Mau, A.W.H, J. Phys. Chem. B 103, 4223 (1999).CrossRefGoogle Scholar
19. Hernadi, K., Fonseca, A., Nagy, J.B., Fudala, A., and Lukas, A.A., Zeolites 17, 416 (1996).CrossRefGoogle Scholar
20. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., and Haddon, R.C., Science 282, 95 (1998).CrossRefGoogle Scholar
21. Abatemarco, T., Stikkel, J., Belfort, J., Frank, B.P., Ajayan, P.M., and Belfort, G., J. Phys. Chem. B 103, 3534 (1999).CrossRefGoogle Scholar
22. Mickelson, E.T., Chiang, I.W., Zimmerman, J.L., Boul, J.P., Lozano, J., Liu, J., Smalley, R.E., Hauge, R.H., and Margrave, J.L., J. Phys. Chem. B 103, 4318 (1999).CrossRefGoogle Scholar
23. Sumanasekera, G.U., Allen, J.L., Fang, S.L., Loper, A.L., Rao, A.M., and Eklund, P.C., J. Phys. Chem. B 103, 4292 (1999).CrossRefGoogle Scholar
24. Chen, Y., Chen, J., Hu, H., Hamon, M.A., Itkis, M.E., and Haddon, R.C., Chem. Phys. Lett. 299, 532 (1999).CrossRefGoogle Scholar
25. Rochefort, A., Salahub, D.R., and Avouris, P., J. Phys. Chem. B 103, 641 (1999).CrossRefGoogle Scholar
26. Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M.F., and Ruoff, R.S., J. Phys. Chem. B 103, 4330 (1999).CrossRefGoogle Scholar
27. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihahsi, T., and Iijima, S., J. Phys. Chem. B 103, 4346 (1999).CrossRefGoogle Scholar
28. Chen, P., Wu, X., Lin, J., and Tan, K.L., J. Phys. Chem. B 103, 4559 (1999).CrossRefGoogle Scholar
29. Pradhan, B.K., Toba, T., Kyotani, T., and Tomita, A., Chem. Mater. 10, 2510 (1998).CrossRefGoogle Scholar
30. Bobyrev, V.A., Bunkin, F.V., Deli, E., Kirichenko, N.A., Luk'yanchuk, B.S., Nanai, L., Simakin, A.V., Hevesi, I., and Shafeev, G.A., Kvantovaya Elektronika 9, 1943 (1982).Google Scholar
31. Kiss, J.G., Nanai, L., Hevesi, I., and Farkas, Z., Microscopy 40, 150 (1983).Google Scholar
32. Bunkin, F.V., Kirichenko, N.A., Luk'yanchuk, B.S., Simakhin, A.V., Shafeev, G.A., Nanai, L., and Hevesi, I., Acta Physica Hungarica 54, 111 (1983).Google Scholar
33. Ursu, I., Nanu, L., Dinescu, M., Henung, A., Mihailescu, I.N., Nistor, L.C., Szil, E., Kovacs, J., Hevesi, I., and Nanai, L., Appl. Phys. A 35, 103 (1984).CrossRefGoogle Scholar
34. Nanai, L., Hevesi, I., Bunkin, F.V., Luk'yanchuk, B.S., Shafeev, G.A., and Alimov, D.T., Infrared Phys. 25, 141 (1985).CrossRefGoogle Scholar
35. Nanai, L., Hevesi, I., Bunkin, F.V., Luk'yanchuk, B.S., and Morozova, E.A., J. Appl. Phys. 61, 2633 (1987).CrossRefGoogle Scholar
36. Vajtai, R., Janicsko-Csaty, J., Thien-Nga, L., Bonard, L-M., and Forro, L., AIP Conf. Proc. 486, 226 (1999).Google Scholar
37. Nanai, L., Vajtai, R., Hevesi, I., Jelski, D.A., and George, T.F., Thin Solid Films 227, 13 (1993).CrossRefGoogle Scholar
38. Nanai, L. and George, T.F., J. Mater. Res. 12, 283 (1997).CrossRefGoogle Scholar
39. Ajayan, P.M., Stephan, O., Redlich, Ph., and Colliex, C., Nature 375, 546 (1995).CrossRefGoogle Scholar
40. Laurent, C., Flahaut, E., Peigney, A., and Rousset, A., New J. Chem. 22, 1229 (1998).CrossRefGoogle Scholar
41. Kiss, L.B., Vajtai, R., and Ajayan, P.M., Phys. Status Solidi B 214/1, R3 (1999).3.0.CO;2-4>CrossRefGoogle Scholar
42. Maser, W.K., Lambert, J.M., Ajayan, P.M., Stephan, O., and Bernier, P., Synth. Met. 77, 243 (1996).CrossRefGoogle Scholar
43. Takizawa, M., Bandow, S., Torii, T., and Iijima, S., Chem. Phys. Lett. 302, 146 (1999).CrossRefGoogle Scholar
44. Yudasaka, M., Ichiashi, T., and Iijama, S., J. Phys. Chem. B 102, 10201 (1998).CrossRefGoogle Scholar
45. Yudasaka, M., Kokai, F., Takahashi, K., Yamada, R., Sensui, N., Ichihashi, T., and Iijama, S., J. Phys. Chem. B 103, 3576 (1999).CrossRefGoogle Scholar
46. Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Kónya, Z., and Nagy, B., J. Chem. Phys. Lett. 303, 117 (1999).CrossRefGoogle Scholar
47. Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., Rousset, A., and Rao, C.N.R, Chem. Phys. Lett. 300, 236 (1999).CrossRefGoogle Scholar
48. Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H., J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
49. Anderson, P.E. and Rodrigez, N.M., J. Mater. Res. 14, 2912 (1999).CrossRefGoogle Scholar
50. de Boer, F.R., Boom, R., Mattens, W.C.M, Miedema, A.R., and Niessen, A.K., Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988), p. 147.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *