Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-2wqtr Total loading time: 0.283 Render date: 2021-09-20T12:39:42.620Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery

Published online by Cambridge University Press:  23 September 2016

Lu Chen
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
Fang Chen
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
Nguyen Tronganh
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
Mengna Lu
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
Yong Jiang*
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
Yang Gao
Affiliation:
Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, People's Republic of China
Zheng Jiao
Affiliation:
Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, People's Republic of China
Lingli Cheng
Affiliation:
Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, People's Republic of China
Bing Zhao*
Affiliation:
Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, People's Republic of China
*Corresponding
a) Address all correspondence to these authors. e-mail: jiangyong@shu.edu.cn
b) e-mail: bzhao@shu.edu.cn
Get access

Abstract

In this article, we report on the preparation of few-layered MoS2/graphene nanocomposite (MoS2/GNS-G) with enlarged interlayer distance as the lithium-ion battery anode via a facile hydrothermal method followed by glucose-assisted thermal annealing. During the synthesis, glucose serving as a small organic molecule can interlay into MoS2 nanosheets, which effectively hinder the aggregation and restacking of MoS2 during the process of heat treatment, retaining a sandwich structure of the composite. The enlarged interlayer distance (approximately 0.98 nm), along with the inserted amorphous carbon, could promote efficient lithium migration into active sites, buffer the volume change and stabilize the electrode structure effectively during the lithium insertion/extraction cycling. Electrochemical tests demonstrate that the MoS2/GNS-G delivers a high discharge capacity of 1583.0 mA h/g in the initial cycle at current density of 100 mA/g. The specific capacity remained at the relative high value of 673.5 mA h/g even at a current density of 1000 mA/g.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ramakrishna, H.S., Gomathi, A., Manna, A.K., Late, D.J., Datta, R., Pati, S.K., and Rao, C.N.: MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 122, 4153 (2010).CrossRefGoogle Scholar
Zhu, C., Mu, X., Aken, P.A., Yu, Y., and Maier, J.: Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 53, 2152 (2014).CrossRefGoogle ScholarPubMed
Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., Neill, A.O., Duesberg, G.S., Grunlan, J.C., Moriarty, G., Chen, J., Wang, J., Minett, A.I., Nicolosi, V., and Coleman, J.N.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944 (2011).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Zeng, Z., Sun, T., Zhu, J., Huang, X., Yin, Z., Lu, G., Fan, Z., Yan, Q., Hng, H.H., and Zhang, H.: An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 51, 9052 (2012).CrossRefGoogle ScholarPubMed
Wang, Z., Ma, L., Chen, W.X., Huang, G.C., Chen, D.Y., Wang, L.B., and Lee, J.Y.: Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Adv. 3, 21675 (2013).CrossRefGoogle Scholar
Wang, Z., Chen, T., Chen, W.X., Chang, K., Ma, L., Huang, G.C., Chen, D.Y., and Lee, J.Y.: CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 1, 2202 (2013).CrossRefGoogle Scholar
Huang, G.C., Chen, T., Chen, W.X., Wang, Z., Chang, K., Ma, L., Huang, F.H., Chen, D.Y., and Lee, J.Y.: Graphene-like MoS2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9, 3693 (2013).CrossRefGoogle Scholar
Chang, K. and Chen, W.: L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720 (2011).CrossRefGoogle Scholar
Hu, L., Ren, Y., Yang, H., and Xu, Q.: Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces 6, 14644 (2014).CrossRefGoogle ScholarPubMed
Lemon, J.P. and Lerner, M.M.: Preparation and characterization of nanocomposites of polyetheres and molybdenum disulfide. Chem. Mater. 6, 207 (1994).CrossRefGoogle Scholar
Xiao, J., Choi, D., Cosimbescu, L., Koech, P., Liu, J., and Lemmon, J.P.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522 (2010).CrossRefGoogle Scholar
Kanatzidis, M.G., Bissessur, R., DeGroot, D.C., Schindler, J.L., and Kannewurf, C.R.: New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chem. Mater. 5, 595 (1993).CrossRefGoogle Scholar
Zhao, B., Zhang, G., Song, J., Jiang, Y., Zhuang, H., Liu, P., and Fang, T.: Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta 56, 7340 (2011).CrossRefGoogle Scholar
Jiang, Y., Ling, X., Cai, X., Jiao, Z., Cheng, L., Bian, L., Nguyen, M., Chu, Y., and Zhao, B.: A novel Fe2O3 rhombohedra/graphene composite as a high stability electrode for lithium-ion batteries. J. Mater. Res. 30, 761 (2015).CrossRefGoogle Scholar
Chang, K., Chen, W., Ma, L., Li, H., Li, H., Huang, F., Xu, Z., Zhang, Q., and Lee, J.Y.: Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21, 6251 (2011).CrossRefGoogle Scholar
Ma, L., Huang, G., Chen, W., Wang, Z., Ye, J., Li, H., Chen, D., and Lee, J.Y.: Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage. J. Power Sources 264, 262 (2014).CrossRefGoogle Scholar
Li, H.L., Yu, K., Fu, H., Guo, B.J., Lei, X., and Zhu, Z.Q.: MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C 119, 7959 (2015).CrossRefGoogle Scholar
Ji, H., Liu, C., Wang, T., Chen, J., Mao, Z., Zhao, J., Hou, W., and Yang, G.: Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 11, 6480 (2015).CrossRefGoogle Scholar
Ding, S.J., Chen, J.S., and Lou, X.W.: Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem. –Eur. J. 17, 13142 (2011).CrossRefGoogle ScholarPubMed
Bindumadhavan, K., Srivastava, S.K., and Mahanty, S.: MoS2–MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49, 1823 (2013).CrossRefGoogle ScholarPubMed
Ma, L., Ye, J., Chen, W., Wang, J., Liu, R., and Lee, J.Y.: Synthesis of few-layer MoS2-graphene composites with superior electrochemical lithium-storage performance by an ionic-liquid-mediated hydrothermal route. ChemElectroChem 2, 538 (2015).CrossRefGoogle Scholar
Yang, L.C., Wang, S.N., Mao, J.J., Deng, J.W., Gao, Q.S., Tang, Y., and Schmidt, O.G.: Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25, 1180 (2013).CrossRefGoogle Scholar
Xu, X., Fan, Z.Y., Yu, X.Y., Ding, S.J., Yu, D.M., and Lou, X.W.: A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv. Energy Mater. 4, 14679 (2014).CrossRefGoogle Scholar
Zhao, C.Y., Kong, J.H., Yao, X.Y., Tang, X.S., Dong, Y.L., Phua, S.L., and Lu, X.H.: Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 6392 (2014).CrossRefGoogle ScholarPubMed
Tronganh, N., Yang, Y., Chen, F., Lu, M., Jiang, Y., Gao, Y., Cheng, L., and Jiao, Z.: SiO2-assisted synthesis of layered MoS2/reduced graphene oxide intercalation composites as high performance anode materials for Li-ion batteries. RSC Adv. 6, 74436 (2016).CrossRefGoogle Scholar
Hu, Z., Wang, L.X., Zhang, K., Wang, J.B., Cheng, F.Y., Tao, Z.L., and Chen, J.: MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 53, 12794 (2014).CrossRefGoogle ScholarPubMed
Jiang, H., Ren, D.Y., Wang, H.F., Hu, Y.J., Guo, S.J., Yuan, H.Y., Hu, P.J., Zhang, L., and Li, C.Z.: 2D monolayer MoS2–carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27, 3687 (2015).CrossRefGoogle Scholar
Liu, Q.H., Wu, Z.J., Ma, Z.L., Dou, S., Wu, J.H., Tao, L., Wang, X., Ouyang, C.B., Shen, A.L., and Wang, S.Y.: One-pot synthesis of nitrogen and sulfur Co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim. Acta 177, 298 (2015).CrossRefGoogle Scholar
Zhou, J., Qin, J., Zhang, X., Shi, C., Liu, E., Li, J., Zhao, N., and He, C.: 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9, 3837 (2015).CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *