Hostname: page-component-758b78586c-ddb2s Total loading time: 0 Render date: 2023-11-29T10:13:22.941Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Mesoporous crystalline SnO2 of large surface area

Published online by Cambridge University Press:  31 January 2011

Chien-Yueh Tung
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
Nae-Lih Wu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
I.A. Rusakova
Affiliation:
Texas Center for Superconductivity at the University of Houston, Houston, Texas 77204-5932
Get access

Abstract

Mesoporous crystalline SnO2 was synthesized by using templating process with cetyltrimethylammonium bromide as the template, combined with a pretreatment process of hexamethyldisilazane vapor prior to thermal crystallization. The combined process resulted in crystalline SnO2 exhibiting large pore volumes and surface areas that cannot be achieved by either of the processes alone, or by the conventional sol-gel process. Fully crystallized SnO2 powder with a pore volume of approximately 0.2 cc/g, a surface area of 220 m2/g, and mesopores mainly of 5 nm in diameter were obtained after heat treatment at 500°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fuller, M.J. and Warwick, M.E., J. Catal. 29, 441 (1973).Google Scholar
2.Sala, F. and Trifiro, F., J. Catal. 34, 68 (1974).Google Scholar
3.Harrison, P.G. and Harris, P.J.F., U.S. Patent No. 5 051 393, September 24, 1991.Google Scholar
4.Seiyama, T., Kato, A., Fujishi, K., and Nagatani, M., Anal. Chem. 34, 1502 (1962).Google Scholar
5.Takahata, K., in Chemical Sensor Technology, edited by Seiyama, T. (Kodansha, Tokyo, Japan, and Elsevier, Amsterdam, The Netherlands, 1988), Vol. 1, p. 39.Google Scholar
6.Camanzi, A. and Sberveglierri, G., U.S. Patent No. 5 185 130, February 9, 1993.Google Scholar
7.Wu, N-L., Hwang, J.Y., Liu, P.Y., Han, C.Y., Kuo, S.L., Liao, K.H., Lee, M.H., and Wang, S.Y., J. Electrochem. Soc. 148, 550 (2001).Google Scholar
8.Wu, N-L., Han, C.Y., and Kuo, S.L., J. Power Sources 109, 418 (2002).Google Scholar
9.Wu, N-L., Kuo, S.L., Electrochem. Solid-State Lett. 6, A85 (2003).Google Scholar
10.Ferrere, S., Zaban, A., Gregg, B.A., J. Phys. Chem. B 101, 4490 (1997).Google Scholar
11.Gratzel, M., Pure Appl. Chem. 73, 459 (2001).Google Scholar
12.Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).Google Scholar
13.Wu, N.L., Wu, L.F., Yang, Y.C., and Huang, S.J., J. Mater. Res. 11, 813 (1996).Google Scholar
14.Wu, N.L. and Wu, L.F., Republic of China Patent No. 78288, April 11, 1996.Google Scholar
15.Goodman, J.F. and Gregg, S.J., J. Chem. Soc. 237, 1162 (1960).Google Scholar
16.Hiratsuka, R.S., Pulcinelli, S.H., and Santilli, C.V., J. Non-Cryst. Solids 121, 76 (1990).Google Scholar
17.Kobayashi, Y., Okamoto, M., and Tomita, A., J. Mater. Sci. 31, 6125 (1996).Google Scholar
18.Yoo, D.J., Tamaki, J., Park, S.J., Miura, N., and Yamazoe, N., J. Am. Ceram. Soc. 79, 2201 (1996).Google Scholar
19.Gulliver, E.A., Garvey, J.W., Wark, T.A., Hampden-Smith, M.J., and Datye, A., J. Am. Ceram. Soc. 74, 1091 (1991).Google Scholar
20.Hampden-Smith, M.J., Wark, T.A., and Brinker, C.J., Coord. Chem. Rev. 112, 81 (1992).Google Scholar
21.Wu, N.L., Wu, L.F., Rusakova, I.A., Hamed, A., and Litvinchuk, A.P., J. Am. Ceram. Soc. 82, 67 (1999).Google Scholar
22.Wu, N.L. and Wang, S.Y., J. Mater. Science 34, 2807 (1999).Google Scholar
23.Huo, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schuth, F., and Stucky, G.D., Chem. Mater. 6, 1176 (1994).Google Scholar
24.Ulagappan, N. and Rao, C.N.R., Chem. Commun. 1685 (1966).Google Scholar
25.Severin, K.G., Abdel-Fattah, T.M., and Pinnavania, T.J., Chem. Commun. 1471 (1998).Google Scholar
26.Chen, F. and Liu, M., Chem. Commun., 1829 (1999).Google Scholar
27.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., Chem. Mater. 11, 2813 (1999).Google Scholar
28.Srivastava, D.N., Chappel, S., Palchik, O., Zaban, A., and Gedanken, A., Langmuir 18, 4160 (2002).Google Scholar
29.Grosso, D., Illia, G.J. de A.A. Soler, Crepaldi, E.L., Charleux, B., and Sanchez, C., Adv. Funct. Mater. 13, 37 (2003).Google Scholar
30.Wang, Y.D., Ma, C.L., Sun, X.D., and Li, H.D., Inorg. Chem. Commun. 4, 223 (2001).Google Scholar
31.Wu, N.L., Wang, S.Y., and Rusakova, I.A., Science 285, 1375 (1999).Google Scholar