Hostname: page-component-5d59c44645-7l5rh Total loading time: 0 Render date: 2024-02-27T11:47:14.362Z Has data issue: false hasContentIssue false

Mesoporous crystalline SnO2 of large surface area

Published online by Cambridge University Press:  31 January 2011

Chien-Yueh Tung
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
Nae-Lih Wu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
I.A. Rusakova
Affiliation:
Texas Center for Superconductivity at the University of Houston, Houston, Texas 77204-5932
Get access

Abstract

Mesoporous crystalline SnO2 was synthesized by using templating process with cetyltrimethylammonium bromide as the template, combined with a pretreatment process of hexamethyldisilazane vapor prior to thermal crystallization. The combined process resulted in crystalline SnO2 exhibiting large pore volumes and surface areas that cannot be achieved by either of the processes alone, or by the conventional sol-gel process. Fully crystallized SnO2 powder with a pore volume of approximately 0.2 cc/g, a surface area of 220 m2/g, and mesopores mainly of 5 nm in diameter were obtained after heat treatment at 500°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fuller, M.J. and Warwick, M.E., J. Catal. 29, 441 (1973).CrossRefGoogle Scholar
2.Sala, F. and Trifiro, F., J. Catal. 34, 68 (1974).CrossRefGoogle Scholar
3.Harrison, P.G. and Harris, P.J.F., U.S. Patent No. 5 051 393, September 24, 1991.Google Scholar
4.Seiyama, T., Kato, A., Fujishi, K., and Nagatani, M., Anal. Chem. 34, 1502 (1962).CrossRefGoogle Scholar
5.Takahata, K., in Chemical Sensor Technology, edited by Seiyama, T. (Kodansha, Tokyo, Japan, and Elsevier, Amsterdam, The Netherlands, 1988), Vol. 1, p. 39.CrossRefGoogle Scholar
6.Camanzi, A. and Sberveglierri, G., U.S. Patent No. 5 185 130, February 9, 1993.Google Scholar
7.Wu, N-L., Hwang, J.Y., Liu, P.Y., Han, C.Y., Kuo, S.L., Liao, K.H., Lee, M.H., and Wang, S.Y., J. Electrochem. Soc. 148, 550 (2001).CrossRefGoogle Scholar
8.Wu, N-L., Han, C.Y., and Kuo, S.L., J. Power Sources 109, 418 (2002).CrossRefGoogle Scholar
9.Wu, N-L., Kuo, S.L., Electrochem. Solid-State Lett. 6, A85 (2003).CrossRefGoogle Scholar
10.Ferrere, S., Zaban, A., Gregg, B.A., J. Phys. Chem. B 101, 4490 (1997).CrossRefGoogle Scholar
11.Gratzel, M., Pure Appl. Chem. 73, 459 (2001).CrossRefGoogle Scholar
12.Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
13.Wu, N.L., Wu, L.F., Yang, Y.C., and Huang, S.J., J. Mater. Res. 11, 813 (1996).CrossRefGoogle Scholar
14.Wu, N.L. and Wu, L.F., Republic of China Patent No. 78288, April 11, 1996.Google Scholar
15.Goodman, J.F. and Gregg, S.J., J. Chem. Soc. 237, 1162 (1960).CrossRefGoogle Scholar
16.Hiratsuka, R.S., Pulcinelli, S.H., and Santilli, C.V., J. Non-Cryst. Solids 121, 76 (1990).CrossRefGoogle Scholar
17.Kobayashi, Y., Okamoto, M., and Tomita, A., J. Mater. Sci. 31, 6125 (1996).CrossRefGoogle Scholar
18.Yoo, D.J., Tamaki, J., Park, S.J., Miura, N., and Yamazoe, N., J. Am. Ceram. Soc. 79, 2201 (1996).CrossRefGoogle Scholar
19.Gulliver, E.A., Garvey, J.W., Wark, T.A., Hampden-Smith, M.J., and Datye, A., J. Am. Ceram. Soc. 74, 1091 (1991).CrossRefGoogle Scholar
20.Hampden-Smith, M.J., Wark, T.A., and Brinker, C.J., Coord. Chem. Rev. 112, 81 (1992).CrossRefGoogle Scholar
21.Wu, N.L., Wu, L.F., Rusakova, I.A., Hamed, A., and Litvinchuk, A.P., J. Am. Ceram. Soc. 82, 67 (1999).CrossRefGoogle Scholar
22.Wu, N.L. and Wang, S.Y., J. Mater. Science 34, 2807 (1999).CrossRefGoogle Scholar
23.Huo, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schuth, F., and Stucky, G.D., Chem. Mater. 6, 1176 (1994).CrossRefGoogle Scholar
24.Ulagappan, N. and Rao, C.N.R., Chem. Commun. 1685 (1966).Google Scholar
25.Severin, K.G., Abdel-Fattah, T.M., and Pinnavania, T.J., Chem. Commun. 1471 (1998).CrossRefGoogle Scholar
26.Chen, F. and Liu, M., Chem. Commun., 1829 (1999).CrossRefGoogle Scholar
27.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., Chem. Mater. 11, 2813 (1999).CrossRefGoogle Scholar
28.Srivastava, D.N., Chappel, S., Palchik, O., Zaban, A., and Gedanken, A., Langmuir 18, 4160 (2002).CrossRefGoogle Scholar
29.Grosso, D., Illia, G.J. de A.A. Soler, Crepaldi, E.L., Charleux, B., and Sanchez, C., Adv. Funct. Mater. 13, 37 (2003).CrossRefGoogle Scholar
30.Wang, Y.D., Ma, C.L., Sun, X.D., and Li, H.D., Inorg. Chem. Commun. 4, 223 (2001).CrossRefGoogle Scholar
31.Wu, N.L., Wang, S.Y., and Rusakova, I.A., Science 285, 1375 (1999).CrossRefGoogle Scholar