Hostname: page-component-7d684dbfc8-hsbzg Total loading time: 0 Render date: 2023-09-25T17:47:14.335Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Low temperature structures of the second stage cesium graphitide and effect of trace impurities

Published online by Cambridge University Press:  31 January 2011

L. Duclaux
C.R.M.D., C.N.R.S.-Université, 1B rue de la Férollerie, 45071 Orléans Cedex 02, France
I. Rannou
C.R.M.D., C.N.R.S.-Université, 1B rue de la Férollerie, 45071 Orléans Cedex 02, France
F. Béguin
C.R.M.D., C.N.R.S.-Université, 1B rue de la Férollerie, 45071 Orléans Cedex 02, France
M. Lelaurain
L.C.M.A., Université Nancy I, B.P. 239, 54506 Vandoeuvre lés Nancy, France
Get access


Stage 2 CsC24 graphite-cesium derivatives were synthesized and characterized using x-ray diffraction. Pure CsC24 specimens are single phase stage 2 in the range 77–300 K. From the 00l scans, we observed on samples slightly polluted during the transfer in the glove box, the tridimensional segregation of stage 2 in a main CsC26 structure and an additional dense CsC20 structure. The 2D Laue diffraction photographs are the same as already reported, but are interpreted as a mixture of 2 × 2 R 0° lattice commensurate and 2.54 × 2.54 R 14.5° lattice incommensurate structures. In oxidized compounds, we identified another 2.23 × 2.23 R 25.5° 2D additional incommensurate structure corresponding to the composition CsC20 already evidenced by analysis of the 00l diffractograms. We suggest that oxygen impurities are at the origin of this particular stiff and dense structure at low temperature.

Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Rüdorff, W. and Schulze, E., Angew, Z.. Chem. 66, 35 (1954).Google Scholar
2.Parry, G. S., Mater. Sci. Eng. 31, 99 (1977).CrossRefGoogle Scholar
3.Clarke, R., Caswell, N., Solin, S., and Horn, M., Phys. Rev. Lett. 43, 2018 (1980).CrossRefGoogle Scholar
4.DiCenzo, S. B., Phys. Rev. B 26, 5878 (1982).CrossRefGoogle Scholar
5.Oufkir, A., Ph.D. Thesis, University of Nancy, France (1990).Google Scholar
6.Duclaux, L., Rannou, I., and Béguin, F., Mol. Cryst. Liq. Cryst. 244, 313 (1994).CrossRefGoogle Scholar
7.Hérold, C., El Gadi, M., Marêché, J. F., and Lagrange, P., Mol. Cryst. Liq. Cryst. 244, 41 (1994).CrossRefGoogle Scholar
8.Hérold, C., El Gadi, M., Marêché, J.F., and Lagrange, P., C. R. Acad. Sci. Paris 318, 1465 (1994).Google Scholar
9.Hérold, A., Bull. Soc. Chim. Fr., 999 (1995).Google Scholar
10.Odou, G. and Naviez, D., Spectra 2000 137, 49 (1989).Google Scholar
11.Leung, S. Y., Dresselhaus, M. S., Underhill, C., Krapchev, T., Dresselhaus, G., and Wuensch, B. J., Phys. Rev. B 24, 3505 (1981).CrossRefGoogle Scholar
12.Drits, V. A. and Tchoubar, C., X-ray Diffraction by Disordered Lamellar Structures (Springer-Verlag, Berlin, Germany, 1990), pp. 71, 77.CrossRefGoogle Scholar
13.Kan, X. B., Misenheimer, M. E., Forster, K., and Moss, S. C., Acta Crystallogr. A 43, 418 (1987).CrossRefGoogle Scholar
14.Parry, G. S., Nixon, D. E., Lester, K. M., and Levene, B. C., J. Phys. C 2 2156 (1969).CrossRefGoogle Scholar
15.Goldmann, M. and Béguin, F., Physica B 156, 289 (1989).CrossRefGoogle Scholar
16.Kaluarachichi, D. and Frindt, R. F., Phys. Rev. B 28, 3662 (1983).Google Scholar
17.Plischke, M. and Leckie, W. D., Can J. Phys. 60, 1139 (1982).CrossRefGoogle Scholar
18.Moss, S. C. and Moret, R., in Intercalation Compounds I, Structure and Dynamics, edited by Zabel, H. and Solin, S. A. (SpringerVerlag, Berlin, Germany, 1990), pp. 5, 58.Google Scholar
19.Mori, M., Moss, S. C., Jan, Y. M., and Zabel, H., Phys. Rev. B 25, 1287 (1982).CrossRefGoogle Scholar
20.Yamada, Y. and Naiki, I., Phys. Soc. Jpn. 51, 2174 (1982).CrossRefGoogle Scholar
21.Winokur, M. J. and Clarke, R., Phys. Rev. Lett. 54, 811 (1985).CrossRefGoogle Scholar
22.Simon, A., J. Solid State Chem. 27, 87 (1979).CrossRefGoogle Scholar