Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T09:21:14.017Z Has data issue: false hasContentIssue false

Large-scale synthesis of highly aligned nitrogen doped carbon nanotubes by injection chemical vapor deposition methods

Published online by Cambridge University Press:  03 March 2011

J. Liu
Affiliation:
The Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
R. Czerw
Affiliation:
The Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
D.L. Carroll*
Affiliation:
The Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
*
a) Address all correspondence to this author. e-mail: carroldl@wfu.edu
Get access

Abstract

In this study, we compare the effects of pyridine (C5H5N) and pyrimidine (C4H4N2) precursors, using ferrocene as a metal source, in the production of nitrogen containing multiwalled carbon nanotubes. Using standard chemical vapor deposition techniques, highly aligned mats of carbon-nitrogen carbon nanotube were synthesized. The maximum nitrogen concentration in these materials is between 1% and 2% when pyridine is used as the precursor and can be increased to 3.2% when pyrimidine is used as the precursor. However, the electronic structure of both materials, as determined using scanning tunneling spectroscopy, suggests that the nitrogen is incorporated into the nanotube lattice in the same way for both precursors.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Teter, D.M. and Hemley, R.J.: Low-compressibility carbon nitrides. Science 271, 53 (1996).CrossRefGoogle Scholar
3.Miyamoto, Y., Cohen, M.L. and Louie, S.G.: Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun. 102, 605 (1997).CrossRefGoogle Scholar
4.Hernandez, E., Goze, C., Bernier, P. and Rubio, A.: Elastic properties of single-wall nanotubes. Appl. Phys. A: Mater. Sci. Proc. 68, 287 (1999).Google Scholar
5.Doytcheva, M., Kaiser, M., Verheijen, M.A., Reyes-Reyes, M., Terrones, M. and de Jonge, N.: Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem. Phys. Lett. 396, 126 (2004).CrossRefGoogle Scholar
6.Suenaga, K., Johansson, M.P., Hellgren, N., Broitman, E., Wallenberg, L.R., Colliex, C., Sundgren, J-E. and Hultman, L.: Carbon nitride nanotubulite-densely-packed and well aligned tubular nanostructures. Chem. Phys. Lett. 300, 695 (1999).CrossRefGoogle Scholar
7.Yudasaka, M., Kikuchi, R., Ohki, Y. and Yoshimura, S.: Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35, 195 (1997).CrossRefGoogle Scholar
8.Sung, S.L., Tsai, S.H., Tseng, C.H., Chiang, F.K., Liu, X.W. and Shih, H.C.: Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett. 74, 197 (1999).CrossRefGoogle Scholar
9.Ma, X. and Wang, E.G.: CN x/carobn nanotube junctions synthesized by microwave chemical vapor deposition. Appl. Phys. Lett. 78, 978 (2000).CrossRefGoogle Scholar
10.Reyes-Reyes, M., Grobert, N., Kamalakaran, R., Seeger, T., Goldberg, D., Rühle, M., Bando, Y., Terrones, H. and Terrones, M.: Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chem. Phys. Lett. 396, 167 (2004).CrossRefGoogle Scholar
11.Terrones, M., Grobert, N., Zhang, J.P., Terrones, H., Olivares, J., Hsu, W.K., Hare, J.P., Cheetham, A.K., Kroto, H.W. and Walton, D.R.M.: Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett. 285, 299 (1998).CrossRefGoogle Scholar
12.Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W-K., Terrones, H., Zhu, Y-Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Rühle, M., Kroto, H.W. and Walton, D.R.M.: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
13.Sen, R., Satishkumar, B.C., Govindaraj, A., Harikumar, K.R., Raina, G., Zhang, J-P., Cheetham, A.K. and Rao, C.N.R.: B–C–N, C–N, and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).CrossRefGoogle Scholar
14.Nath, M., Satishkumar, B.C., Govindaraj, A., Vinod, C.P. and Rao, C.N.R.: Production of bundles of aligned carbon and carbon-nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem. Phys. Lett. 322, 333 (2000).CrossRefGoogle Scholar
15.Terrones, M., Terrones, H., Grobert, N., Trasobares, S., Hsu, W-K., Zhu, Y-Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Redlich, P.K., Rühle, M., Zhang, J.P. and Cheetham, A.K.: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932 (1999).CrossRefGoogle Scholar
16.Han, W-Q., Redlich, P.K., Seeger, T., Emst, F., Rühle, M., Grobert, N., Hsu, W-K., Chang, B-H., Zhu, Y-Q., Kroto, H.W., Walton, D.R.M., Terrones, M. and Terrones, H.: Aligned CN x nanotubes by pyrolysis of ferocene/C60 under NH3 atomosphere. Appl. Phys. Lett. 77, 1807 (2000).CrossRefGoogle Scholar
17.Lee, C.J., Lyu, S.C., Kim, H-W., Lee, J.H. and Cho, K.I.: Synthesis of bamboo-shaped carbon-nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system. Chem. Phys. Lett. 359, 115 (2002).CrossRefGoogle Scholar
18.Sen, R., Satishkumar, B.C., Govindaraj, S., Harikumar, K.R., Renganathan, M.K. and Rao, C.N.R.: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 12, 2335 (1997).CrossRefGoogle Scholar
19.Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C. and Chen, J.: Continuous production of aligned carbon nanotubes: A step closer to commercial realization. J. Chen. Chem. Phys. Lett. 303, 467 (1999).CrossRefGoogle Scholar
20.Terrones, M., Ajayan, P.M., Banhart, F., Blase, X., Carroll, D.L., Czerw, R., Foley, B., Grobert, N., Kamalakaran, R., Kohler-Redlich, P., Rühle, M., Seeger, T. and Terrones, H.: N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties. Appl. Phys. A: Mater. Sci. Proc. 74, 355 (2002).CrossRefGoogle Scholar
21.Liu, J., Czerw, R., Webster, S., Carroll, D.L., Park, J.H., Park, Y.W. and Terrones, M. Advances in CNx nanotube growth, in Nanotube-Based Devices, edited by Bernier, P., Carroll, D., Kim, G-T., and Roth, S. (Mater. Res. Soc. Symp. Proc. 772, Warrendale, PA, 2003), p. 105.Google Scholar
22.Scofiled, J.H.: Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. 8, 129 (1976).CrossRefGoogle Scholar
23.Tang, C., Bando, Y., Golberg, D. and Xu, F.: Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42, 2625 (2004).CrossRefGoogle Scholar
24.Shimoyama, I., Wu, G.H., Sekiguchi, T. and Baba, Y.: Evidence for the existence of nitrogen-substituted graphic structure by polarization dependence of near-edge x-ray-absorption fine structure. Phys. Rev. B 62, R6053 (2000).CrossRefGoogle Scholar
25.Casanovas, J., Ricart, J.M., Rubio, J., Illas, F. and Jimenez-Mateos, J.M.: Origin of large N 1s binding energy in x-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118, 8071 (1996).CrossRefGoogle Scholar
26.Webster, S., Maultzsh, J., Thomsen, C., Liu, J., Czerw, R., Terrones, M., Adar, F., John, C., Whitley, A. and Carroll, D.L.: Raman characterization of nitrogen doped multiwalled carbon nanotubes, in Nanotube-Based Devices, edited by Bernier, P., Carroll, D., Kim, G-T., and Roth, S. (Mater. Res. Soc. Symp. Proc. 772, Warrendale, PA, 2003), p. 129.Google Scholar
27.Glerup, M., Castignolles, M., Holzinger, M., Hug, G., Loiseau, A. and Bernier, P.: Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chem. Comm. 20, 2542 (2003).CrossRefGoogle Scholar
28.Feenstra, R.M.: Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Phys. Rev. B 50, 4561 (1994).CrossRefGoogle ScholarPubMed
29.Czerw, R., Terrones, M., Charlier, J-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P.M., Blau, W., Rühle, M. and Carroll, D.L.: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1, 457 (2001).CrossRefGoogle Scholar
30.Choi, H.J., Ihm, J., Louie, S.G. and Cohen, M.L.: Defect, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917 (2000).CrossRefGoogle ScholarPubMed
31.Nevidomskyy, A.H., Csányi, G. and Payne, M.C.: Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys. Rev. Lett. 91, 105502 (2003).CrossRefGoogle ScholarPubMed