Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T04:40:41.608Z Has data issue: false hasContentIssue false

Ion irradiation and radiation effect characterization at the JANNUS-Saclay triple beam facility

Published online by Cambridge University Press:  11 February 2015

Lucile Beck*
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Yves Serruys
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Sandrine Miro
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Patrick Trocellier
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Eric Bordas
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Frédéric Leprêtre
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Daniel Brimbal
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Thomas Loussouarn
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Hervé Martin
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Sylvain Vaubaillon
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France; and CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Stéphanie Pellegrino
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France; and CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Diana Bachiller-Perea
Affiliation:
Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/ Faraday 3, Campus de Cantoblanco, E-28049 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: lucile.beck@cea.fr
Get access

Abstract

JANNUS (Joint Accelerators for Nanosciences and Nuclear Simulation), the unique triple beam facility in Europe, offers the possibility to produce three ion beams simultaneously for nuclear recoil damage and implantation of a large array of ions for well-controlled modeling-oriented experiments. The first triple beam irradiation was performed in March 2010. Along with irradiation developments, continuous efforts have been made to implement ex situ and in situ characterization tools. In this study, we set out the present status of the JANNUS facility of the Saclay site. We focus on the instrumentation used for conducting multi-ion beam irradiations and implantations as well as for characterizing bombarded samples. On-line control of irradiation parameters, in situ modification monitoring using Raman spectroscopy or ion beam induced luminescence, and ex situ characterization by ion beam surface analysis [Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA), and elastic recoil detection analysis (ERDA)] of implanted samples are detailed. Some examples of single, dual, and triple beam irradiation configurations are presented. Access to the facility is provided by the French network EMIR for national and international users (http://emir.in2p3.fr/).

Type
Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Khalid Hattar

References

REFERENCES

Was, G.S. and Averback, R.S.: Radiation damage using ion beams. Compr. Nucl. Mater. 1, 195 (2012).Google Scholar
Hosemann, P.: Studying radiation damage in structural materials by using ion accelerators. Rev. Accel. Sci. Technol. 4, 161 (2011).Google Scholar
Hamada, S., Miwa, Y., Yamaki, D., Katano, Y., Nakazawa, T., and Noda, K.: Development of a Triple Beam Irradiation Facility (Elsevier Science Bv, Sendai, Japan, 1997); p. 383.Google Scholar
Bufford, D. and Hattar, K.: The design and implementation of a single, double, and triple concurrent beam in situ ion irradiation TEM facility. Microsc. Microanal. 20, 1562 (2014).Google Scholar
Norton, G.A. and Stodola, S.E.: Trends and applications for MeV electrostatic ion beam accelerators. Appl. Surf. Sci. 310, 89 (2014).CrossRefGoogle Scholar
Was, G.S., Jiao, Z., Getto, E., Sun, K., Monterrosa, A.M., Maloy, S.A., Anderoglu, O., Sencer, B.H., and Hackett, M.: Emulation of reactor irradiation damage using ion beams. Scr. Mater. 88, 33 (2014).Google Scholar
Serruys, Y., Trocellier, P., Miro, S., Bordas, E., Ruault, M.O., Kaïtasov, O., Henry, S., Leseigneur, O., Bonnaillie, Th., Pellegrino, S., Vaubaillon, S., and Uriot, D.: JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J. Nucl. Mater. 386, 967 (2009).Google Scholar
Pellegrino, S., Trocellier, P., Miro, S., Serruys, Y., Bordas, É., Martin, H., Chaâbane, N., Vaubaillon, S., Gallien, J.P., and Beck, L.: The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 273, 213 (2012).Google Scholar
Prokhodtseva, A., Decamps, B., and Schaeublin, R.: Comparison between bulk and thin foil ion irradiation of ultra high purity Fe. J. Nucl. Mater. 442, 786 (2013).CrossRefGoogle Scholar
Brimbal, D., Meslin, E., Henry, J., Décamps, B., and Barbu, A.: He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt.% Cr: A transmission electron microscopy study. Acta Mater. 61, 4757 (2013).CrossRefGoogle Scholar
Bhattacharya, A., Meslin, E., Henry, J., Pareige, C., Décamps, B., Genevois, C., Brimbal, D., and Barbu, A.: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394 (2014).Google Scholar
Beck, L., de Château-Thierry, A., Frontier, J.P., Trouslard, Ph., and Pellegrino, S.: 25 years of IBA teaching experience at the National Institute for Nuclear Science and Technology, France. Nucl. Instrum. Methods Phys. Res., Sect. B 219, 394 (2004).Google Scholar
Jankowiak, A., Grygiel, C., Monnet, I., Serruys, Y., Colin, C., Miro, S., Gelebart, L., Gosmain, L., and Costantini, J-M.: Advanced SiC fiber strain behavior during ion beam irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 144 (2013).Google Scholar
Huguet-Garcia, J., Jankowiak, A., Miro, S., Serruys, Y., and Costantini, J-M.: Ion irradiation effects on third generation SiC fibers in elastic and inelastic energy loss regimes. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 93 (2014).CrossRefGoogle Scholar
Dely, N., Ngono-Ravache, Y., Ramillon, J-M., and Balanzat, E.: Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET. Nucl. Instrum. Methods Phys. Res., Sect. B 236, 145 (2005).CrossRefGoogle Scholar
Meslin, E., Radiguet, B., and Loyer-Prost, M.: Radiation-induced precipitation in a ferritic model alloy: An experimental and theoretical study. Acta Mater. 61, 6246 (2013).Google Scholar
Pellegrino, S., Thomé, L., Debelle, A., Miro, S., and Trocellier, P.: Radiation effects in carbides: TiC and ZrC versus SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 103 (2014).Google Scholar
Miro, S., Costantini, J-M., Sorieul, S., Gosmain, L., and Thomé, L.: Recrystallization of amorphous ion implanted silicon carbide after thermal annealing. Philos. Mag. Lett. 92, 633 (2012).CrossRefGoogle Scholar
Trocellier, P., Miro, S., Serruys, Y., Vaubaillon, S., Pellegrino, S., Agarwal, S., Moll, S., and Beck, L.: Study of helium migration in nuclear materials at Jannus–Saclay. Nucl. Instrum. Methods Phys. Res., Sect. B 331, 55 (2014).CrossRefGoogle Scholar
Hsiung, L., Fluss, M., Tumey, S., Kuntz, J., El-Dasher, B., Wall, M., Choi, B., Kimura, A., Willaime, F., and Serruys, Y.: HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance. J. Nucl. Mater. 409, 72 (2011).Google Scholar
Hsiung, L.L., Fluss, M.J., Tumey, S.J., Choi, B.W., Serruys, Y., Willaime, F., and Kimura, A.: Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82, 184103 (2010).Google Scholar
Thomé, L., Debelle, A., Garrido, F., Trocellier, P., Serruys, Y., Velisa, G., and Miro, S.: Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phys. Lett. 102, 141906 (2013).Google Scholar
Thomé, L., Velisa, G., Debelle, A., Miro, S., Garrido, F., Trocellier, P., and Serruys, Y.: Behavior of nuclear materials irradiated with a dual ion beam. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 219 (2014).Google Scholar
Brimbal, D., Miro, S., de Castro, V., Poissonnet, S., Trocellier, P., Serruys, Y., and Beck, L.: Application of Raman spectroscopy to the study of hydrogen in an ion irradiated oxide-dispersion strengthened Fe–12Cr steel. J. Nucl. Mater. 447, 179 (2014).Google Scholar
de Castro, V., Briceno, M., Lozano-Perez, S., Trocellier, P., Roberts, S G., and Pareja, R.: TEM characterization of simultaneous triple ion implanted ODS Fe12Cr. J. Nucl. Mater. 455, 157 (2014).CrossRefGoogle Scholar
Ogur, M., Yamaji, N., Higuchi, T., Imai, M., Itoh, A., Imanishi, N., and Nakata, K.: Thermal behavior of hydrogen in helium-implanted high-purity SUS316L. Nucl. Instrum. Methods Phys. Res., Sect. B 136, 483 (1998).Google Scholar
Tolstolutskaya, G.D., Ruzhytskiy, V.V., Kopanets, I.E., Karpov, S.A., Bryk, V.V., Voyevodin, V.N., and Garner, F.A.: Displacement and helium-induced enhancement of hydrogen and deuterium retention in ion-irradiated 18Cr10NiTi stainless steel. J. Nucl. Mater. 356, 136 (2006).Google Scholar
Takagi, I., Matsuoka, K., Tanaka, T., Akiyoshi, M., and Sasaki, T.: Hydrogen trapping in 3He-irradiated Fe. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 117 (2013).Google Scholar
Lescoat, M-L., Ribis, J., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J. Nucl. Mater. 428, 176 (2012).Google Scholar
Hattar, K., Bufford, D.C., and Buller, D.L.: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 56 (2014).Google Scholar
Kaoumi, D., Adamson, J., and Kirk, M.: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).Google Scholar
Levine, T.E., Yu, N., Kodali, P., Walter, KC., Nastasi, M., Tesmer, J.R., Maggiore, C.J., and Mayer, J.W.: In situ ion-beam analysis and modification of sol-gel zirconia thin films. Nucl. Instrum. Methods Phys. Res., Sect. B 106, 597 (1995).CrossRefGoogle Scholar
Canizarès, A., Gimbretière, G., Tobon, Y.A., Raimboux, N., Omnée, R., Perdicakis, M., Muzeau, B., Leoni, E., Alam, M.S., Mendes, E., Simon, D., Matzen, G., Corbel, C., Barthe, M.F., and Simon, P.: In situ Raman monitoring of materials of materials under irradiation: Study of uranium dioxide alteration by water radiolysis. J. Raman Spectrosc. 43, 1492 (2012).Google Scholar
Gibert-Mougel, C., Couvreur, F., Costantini, J-M., Bouffard, S., Levesque, F., Hémon, S., Paumier, E., and Dufour, C.: Phase transformation of polycrystalline zirconia induced by swift heavy ion irradiation. J. Nucl. Mater. 295, 121 (2001).Google Scholar
Miro, S., Velisa, G., Thomé, L., Trocellier, P., Serruys, Y., Debelle, A., and Garrido, F.: Monitoring by Raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman Spectrosc. 45, 481 (2014).Google Scholar
Miro, S., Costantini, J-M., Huguet-Garcia, J., and Thomé, L.: Recrystallization of hexagonal silicon carbide after gold ion irradiation and thermal annealing. Philos. Mag. 94(34), 3898 (2014). DOI:10.1080/14786435.2014.968230.CrossRefGoogle Scholar
Nagata, S., Yamamoto, S., Inouye, A., Tsuchiya, B., Toh, K., and Shikama, T.: Luminescence characteristics and defect formation in silica glasses under H and He ion irradiation. J. Nucl. Mater. 367, 1009 (2007).Google Scholar
Peňa-Rodríguez, O., Jimenéz-Rey, D., Manzano-Santamaría, J., Olivares, J., Muňoz, A., Rivera, A., and Agulló-López, F.: Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions. Appl. Phys. Express 5, 011101 (2012).Google Scholar
Trocellier, P., Agarwal, S., and Miro, S.: A review on helium mobility in inorganic materials. J. Nucl. Mater. 445, 128 (2014).CrossRefGoogle Scholar
Miro, S., Costantini, J.M., Haussy, J., Beck, L., Vaubaillon, S., Pellegrino, S., Meis, C., Grob, J.J., Zhang, Y., and Weber, W.J.: Nuclear reaction analysis of helium migration in silicon carbide. J. Nucl. Mater. 415, 5 (2011).Google Scholar
Agarwal, S., Trocellier, P., Serruys, Y., Vaubaillon, S., and Miro, S.: Helium mobility in advanced nuclear ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 117 (2014).CrossRefGoogle Scholar
Agarwal, S., Trocellier, P., Vaubaillon, S., and Miro, S.: Diffusion and retention of helium in titanium carbide. J. Nucl. Mater. 448, 144 (2014).Google Scholar