Hostname: page-component-7d8f8d645b-h5t26 Total loading time: 0 Render date: 2023-05-28T18:02:47.103Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Investigation of thiophene flanked diketopyrrolopyrrole monomers with straight and branched alkyl chains and their electropolymerization study

Published online by Cambridge University Press:  15 May 2017

Supreetha Paleyanda Ponnappa
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane, Australia
Sivanesan Arumugam*
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane, Australia
Sergei Manzhos
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering DR 1, Singapore 117576, Singapore
Jennifer MacLeod
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane, Australia
Henry J. Spratt
Central Analytical Research Facility (CARF), Institute of Future Environments, Queensland University of Technology (QUT), Brisbane, Australia
Anthony P. O’Mullane
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane, Australia
Prashant Sonar*
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane, Australia
a)Address all correspondence to these authors. e-mail:
Get access


Diketopyrrolopyrrole (DPP) is a critically important building block that has gained importance in the organic electronics community because of its wide applicability in various devices. In this work, the thiophene flanked DPP moiety attached to alkyl chains of various lengths (this includes straight octyl and branched ethyl hexyl units) has been used as the monomer for electropolymerization. This paper focuses on the study of optical, thermal, solid state ordering and electrochemical properties of these electron deficient monomers using various characterization techniques such as UV–Vis spectrometry (UV), photo-luminescence spectroscopy (PL), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), as well as ab initio modeling. These monomers exhibit broad absorption spectra from the ultraviolet (280–400 nm) to visible (400–600 nm) regions and emission spectra between 560 and 610 nm. The band gaps of these monomers were calculated to be in the range of 2.00–2.20 eV. These monomers were electropolymerized by scanning the potential between −0.5 and 2.0 V versus ferrocene for up to 50 cycles on a glassy carbon electrode.

Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Contributing Editor: Linda S. Schadler



Farnum, D.G., Mehta, G., Moore, G.G.I., and Siegal, F.P.: Attempted reformatskii reaction of benzonitrile, 1,4-diketo-3,6-diphenylpyrrolo[3,4-C]pyrrole. A lactam analogue of pentalene. Tetrahedron Lett. 15(29), 2549 (1974).CrossRefGoogle Scholar
A. Iqbal and L. Cassar: Process for dyeing high-molecular organic material, and novel polycyclic pigment. U.s.p. office (Ed.), US4415685 A (Ciba-Geigy Corporation, Ardsley, NY, United States, 1982).
Fenwick, O., Fusco, S., Baig, T.N., Di Stasio, F., Steckler, T.T., Henriksson, P., Fléchon, C., Andersson, M.R., and Cacialli, F.: Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Mater. 1(3), 032108 (2013).CrossRefGoogle Scholar
Li, Y., Singh, S.P., and Sonar, P.: A high mobility P-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv. Mater. 22(43), 4862 (2010).CrossRefGoogle ScholarPubMed
Yi, Z., Wang, S., and Liu, Y.: Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 27(24), 3589 (2015).CrossRefGoogle ScholarPubMed
Qu, S. and Tian, H.: Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 48(25), 3039 (2012).CrossRefGoogle ScholarPubMed
Li, Y., Sonar, P., Murphy, L., and Hong, W.: High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 6(6), 1684 (2013).CrossRefGoogle Scholar
Surya, S.G., Nagarkar, S.S., Ghosh, S.K., Sonar, P., and Rao, V.R.: OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel materials. Sens. Actuators, B 223, 114 (2016).CrossRefGoogle Scholar
Wang, B., Huynh, T-P., Wu, W., Do, T.T., Cancilla, J.C., Torrecilla, J.S., Nahid, M.M., Colwell, J.M., Puniredd, S.R., McNeill, C.R., Sonar, P., and Haick, H.: Highly-sensitive ambipolar field effect transistor based diketopyrrolopyrrole copolymer for selective detection and discrimination of xylene isomers. Adv. Mater. 28, 4012 (2016). doi: 10.1002/adma.201505641.CrossRefGoogle Scholar
Zhou, Y., Han, S-T., Sonar, P., and Roy, V.: Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3(2319), 5 (2015).Google ScholarPubMed
Grzybowski, M. and Gryko, D.T.: Diketopyrrolopyrroles: Synthesis, reactivity, and optical properties. Adv. Opt. Mater. 3(3), 280 (2015).CrossRefGoogle Scholar
Kaur, M. and Choi, D.H.: Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 44(1), 58 (2015).CrossRefGoogle ScholarPubMed
Pron, A. and Leclerc, M.: Imide/amide based π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38(12), 1815 (2013).CrossRefGoogle Scholar
Tieke, B., Rabindranath, A.R., Zhang, K., and Zhu, Y.: Conjugated polymers containing diketopyrrolopyrrole units in the main chain. Beilstein J. Org. Chem. 6(1), 830 (2010).CrossRefGoogle Scholar
Cirpan, A., Argun, A.A., Grenier, C.R., Reeves, B.D., and Reynolds, J.R.: Electrochromic devices based on soluble and processable dioxythiophene polymers. J. Mater. Chem. 13(10), 2422 (2003).CrossRefGoogle Scholar
Cosnier, S. and Karyakin, A.: Electropolymerization: Concepts, Materials and Applications (John Wiley & Sons, Hoboken, 2011).Google Scholar
Zhu, Y., Zhang, K., and Tieke, B.: Electrochemical polymerization of bis(3,4-ethylenedioxythiophene)-substituted 1,4-diketo-3,6-diphenyl-pyrrolo[3,4-c]pyrrole (DPP) derivative. Macromol. Chem. Phys. 210(6), 431 (2009).CrossRefGoogle Scholar
Zhang, K., Tieke, B., Forgie, J.C., and Skabara, P.J.: Electrochemical polymerisation of N-arylated and N-alkylated EDOT-substituted pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) derivatives: Influence of substitution pattern on optical and electronic properties. Macromol. Rapid Commun. 30(21), 1834 (2009).CrossRefGoogle ScholarPubMed
Welterlich, I., Neudorfl, J.M., and Tieke, B.: Electrochemical polymerization of 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP) derivatives. Polym. Chem. 6(6), 1005 (2015).CrossRefGoogle Scholar
Low, J.Z., Neo, W.T., Ye, Q., Ong, W.J., Wong, I.H.K., Lin, T.T., and Xu, J.: Low band-gap diketopyrrolopyrrole-containing polymers for near infrared electrochromic and photovoltaic applications. J. Polym. Sci., Part A: Polym. Chem. 53(10), 1287 (2015).CrossRefGoogle Scholar
Wang, J., Cai, G., Zhu, X., and Zhou, X.: Oxidative chemical polymerization of 3,4-ethylenedioxythiophene and its applications in antistatic coatings. J. Appl. Polym. Sci. 124(1), 109 (2012).CrossRefGoogle Scholar
Kros, A., Nolte, R.J.M., and Sommerdijk, N.A.J.M.: Poly(3,4-ethylenedioxythiophene)-based copolymers for biosensor applications. J. Polym. Sci., Part A: Polym. Chem. 40(6), 738 (2002).CrossRefGoogle Scholar
Huang, S., Liu, S., Wang, K., Yang, C., Luo, Y., Zhang, Y., Cao, B., Kang, Y., and Wang, M.: Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging. Nanoscale 7(3), 889 (2015).CrossRefGoogle Scholar
Ftouni, H., Bolze, F.d.r., de Rocquigny, H., and Nicoud, J-F.o.: Functionalized two-photon absorbing diketopyrrolopyrrole-based fluorophores for living cells fluorescent microscopy. Bioconjugate Chem. 24(6), 942 (2013).CrossRefGoogle ScholarPubMed
Sanford, E.M., Tori, M.E., Smeltzer, T.M., Beaudoin, C.K., Bowser, B.H., Anderson, M.E., and Brown, K.L.: Cyclic voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized films based on (3,4-ethylenedioxythiophene)-substituted 3,6-dithiophen-2-yl-2,5-dihydropyrrole[3,4-c]pyrrole-1,4-dione. Electrochemistry 83(12), 1061 (2015).CrossRefGoogle Scholar
Waltman, R. and Bargon, J.: Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64(1), 76 (1986).CrossRefGoogle Scholar
Zhang, K., Tieke, B., Forgie, J.C., Vilela, F., Parkinson, J.A., and Skabara, P.J.: Cross-linked polymers based on 2,3,5,6-tetra-substituted pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) synthesis, optical and electronic properties. Polymer 51(26), 6107 (2010).CrossRefGoogle Scholar
Naik, M.A. and Patil, S.: Diketopyrrolopyrrole-based conjugated polymers and small molecules for organic ambipolar transistors and solar cells. J. Polym. Sci., Part A: Polym. Chem. 51(20), 4241 (2013).CrossRefGoogle Scholar
Li, Y., Sonar, P., Singh, S.P., Soh, M.S., van Meurs, M., and Tan, J.: Annealing-free high-mobility diketopyrrolopyrrole quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133(7), 2198 (2011).CrossRefGoogle ScholarPubMed
Hohenberg, P. and Kohn, W.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965).Google Scholar
Kohn, W. and Sham, L.: Self-consistent equations including exchange and correlation effects. Solid State Phys. 4(16), 140 (1965).Google Scholar
Barnes, E.C., Petersson, G.A., Montgomery, J.A. Jr., Frisch, M.J., and Martin, J.M.: Unrestricted coupled cluster and Brueckner doubles variations of W1 theory. J. Chem. Theory Comput. 5(10), 2687 (2009).CrossRefGoogle ScholarPubMed
Becke, A.d.: 3 parameter functional combined with the non-local correlation LYP. J. Chem. Phys. 98(7), 5648 (1993).CrossRefGoogle Scholar
Dunning, T.H. Jr. and Hay, P.J.: Methods of electronic structure theory. Mod. Theor. Chem. 6(1), 31 (1977).Google Scholar
Check, C.E., Faust, T.O., Bailey, J.M., Wright, B.J., Gilbert, T.M., and Sunderlin, L.S.: Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. J. Phys. Chem. A 105(34), 8111 (2001).CrossRefGoogle Scholar
Mennucci, B.: Polarizable continuum model, Wiley interdisciplinary reviews. Comput. Mol. Sci. 2(3), 386 (2012).CrossRefGoogle Scholar
Casida, M.E.: Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. 914(1), 3 (2009).CrossRefGoogle Scholar
Horcas, I., Fernández, R., Gomez-Rodriguez, J.M., Colchero, J., Gómez-Herrero, J., and Baro, A.M.: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007).CrossRefGoogle Scholar
Tamayo, A.B., Walker, B., and Nguyen, T.Q.: A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J. Phys. Chem. C 112(30), 11545 (2008).CrossRefGoogle Scholar
Bürgi, L., Turbiez, M., Pfeiffer, R., Bienewald, F., Kirner, H.J., and Winnewisser, C.: High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv. Mater. 20(11), 2217 (2008).CrossRefGoogle Scholar
Naik, M.A., Venkatramaiah, N., Kanimozhi, C., and Patil, S.: Influence of side-chain on structural order and photophysical properties in thiophene based diketopyrrolopyrroles a systematic study. J. Phys. Chem. C 116(50), 26128 (2012).CrossRefGoogle Scholar
Yanagisawa, H., Mizuguchi, J., Aramaki, S., and Sakai, Y.: Organic field-effect transistor devices based on latent pigments of unsubstituted diketopyrrolopyrrole or quinacridone. Jpn. J. Appl. Phys. 47(6R), 4728 (2008).CrossRefGoogle Scholar
Salunke, J.K., Wong, F.L., Feron, K., Manzhos, S., Lo, M.F., Shinde, D., Patil, A., Lee, C.S., Roy, V.A.L., Sonar, P., and Wadgaonkar, P.P.: Phenothiazine and carbazole substituted pyrene based electroluminescent organic semiconductors for OLED devices. J. Mater. Chem. C 4(5), 1009 (2016).CrossRefGoogle Scholar
El-Maiss, J., Darmanin, T., and Guittard, F.: Branched versus linear perfluorocarbon chains in the formation of superhydrophobic electrodeposited films with low bioaccumulative potential. J. Mater. Sci. 49(22), 7760 (2014).CrossRefGoogle Scholar
Sadanandhan, N.K., Devaki, S.J., Narayanan, R.K., and Cheriyathuchenaaramvalli, M.: Electrochemically patterned transducer with anisotropic PEDOT through liquid crystalline template polymerization. ACS Appl. Mater. Interfaces 7(32), 18028 (2015).CrossRefGoogle ScholarPubMed
Sayyah, S., Mohamed, F., and Shaban, M.: Electropolymerization of (ortho methoxy phenol-co-pyrrole) and characterization of the obtained film. Appl. Chem. 7(1), 2278 (2014).Google Scholar
Calderon, E.H., Dangate, M., Manfredi, N., Abbotto, A., Salamone, M.M., Ruffo, R., and Mari, C.M.: Electrochemical and spectroelectrochemical properties of a new donor–acceptor polymer containing 3,4-dialkoxythiophene and 2,1,3-benzothiadiazole units. Polymers 5(3), 1068 (2013).CrossRefGoogle Scholar
Leonat, L., Sbarcea, G., and Branzoi, I.V.: Cyclic Voltammetry for energy levels estimation of organic materials. Chem. Mater. Sci. 75(11), 111 (2013).Google Scholar
Li, Y., Sun, B., Sonar, P., and Singh, S.P.: Solution processable poly(2,5-dialkyl-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione) for ambipolar organic thin film transistors. Org. Electron. 13(9), 1606 (2012).CrossRefGoogle Scholar
Supplementary material: File

Ponnappa supplementary material

Ponnappa supplementary material

Download Ponnappa supplementary material(File)
File 1 MB