Hostname: page-component-f7d5f74f5-qghsn Total loading time: 0 Render date: 2023-10-02T22:46:43.471Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

High-temperature properties of a silicon nitride/boron nitride nanocomposite

Published online by Cambridge University Press:  03 March 2011

Takafumi Kusunose*
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Rak-Joo Sung
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Tohru Sekino
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Shuji Sakaguchi
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
Koichi Niihara
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
*
a)Address all correspondence to this author. e-mail: kusuno15@sanken.osaka-u.ac.jp
Get access

Abstract

Hexagonal graphitic BN (h-BN) is interesting as a second phase for high-temperature structural ceramics because it has the same crystal structure as graphite, for which fracture strength and Young’s modulus increase with increased temperature. In this study, high-temperature mechanical properties of Si3N4/BN nanocomposite were evaluated to clarify the effect of fine h-BN particles at elevated temperatures. As a result, we found that high-temperature strength and hardness of the nanocomposite were maintained up to high temperatures; also, its Young’s modulus increased gradually, concomitant with elevated temperatures up to 1400 °C. Finally, these properties were compared with those of monolithic Si3N4 and Si3N4/BN microcomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mitomo, M. and Petzow, G., MRS Bull. 20, 19 (1995).CrossRefGoogle Scholar
2Yoon, S-W., Akatsu, T. and Yasuda, E., J. Mater. Res. 11, 120 (1996).CrossRefGoogle Scholar
3Lange, F.F., Am. Ceram. Soc. Bull. 62, 1369 (1983).Google Scholar
4Tsuge, A., Nishida, K. and Komatsu, M., J. Am. Ceram. Soc. 58, 323 (1975).CrossRefGoogle Scholar
5Guo, S., Hirosaki, N., Yamamoto, Y., Nishimura, T. and Mitomo, M., J. Am. Ceram. Soc. 85, 1607 (2002).CrossRefGoogle Scholar
6Nishimura, T., Mitomo, M. and Suematsu, H., J. Mater. Res. 12, 203 (1997).CrossRefGoogle Scholar
7Ohji, T. and Yamauchi, Y., J. Am. Ceram. Soc. 76, 3105 (1993).CrossRefGoogle Scholar
8Xu, H.H.K., Braun, L.M., Ostertag, C.P., Krause, R.F. and Jr., , J. Am. Ceram. Soc. 78, 388 (1995).CrossRefGoogle Scholar
9Peni, F., Crampon, J. and Duclos, R., Ceram. Inter. 18, 413 (1992).CrossRefGoogle Scholar
10Melandri, C., Gee, M.G., Portu, G. and Guicciardi, S., Tribo. Inter. 28, 403 (1995).CrossRefGoogle Scholar
11Sinclair, W. and Simmons, H., J. Mater. Sci. Lett. 6, 627 (1987).CrossRefGoogle Scholar
12Liu, H. and Hsu, S.M., J. Am. Ceram. Soc. 79, 2452 (1996).CrossRefGoogle Scholar
13Mazdiyasni, K.S. and Ruh, Robert, J. Am. Ceram. Soc. 64, 415 (1981).CrossRefGoogle Scholar
14Launay, D.G., Brayet, G. and Thevenot, F., J. Mater. Sci. Lett. 5, 940 (1986).CrossRefGoogle Scholar
15Ramamurty, U., Hansson, T. and Suresh, S., J. Am. Ceram. Soc. 77,2985 (1994).CrossRefGoogle Scholar
16Pezzotti, G., Tanaka, I. and Okamoto, T., J. Am. Ceram. Soc. 74, 326 (1991).CrossRefGoogle Scholar
17Lutz, E.H. and Swain, M.V., J. Am. Ceram. Soc. 75, 67 (1992).CrossRefGoogle Scholar
18Hayama, S., Ozawa, M. and Suzuki, S., J. Ceram. Soc. Jpn. 103, 833 (1995).CrossRefGoogle Scholar
19Kusunose, T., Sekino, T., Choa, Y-H. and Niihara, K., J. Am. Ceram. Soc. 85, 2678 (2002).CrossRefGoogle Scholar
20Zhang, G.J. and Ohji, T., J. Mater. Res. 15, 1876 (2000).CrossRefGoogle Scholar
21Zhang, G.J. and Ohji, T., J. Am. Ceram. Soc. 74, 1475 (2001).Google Scholar
22Niihara, K., J. Ceram. Soc. Jpn. 99, 974 (1991).CrossRefGoogle Scholar
23Niihara, K., Suganuma, K. and Izaki, K., J. Mater. Sci. Lett. 9, 598 (1990).CrossRefGoogle Scholar
24Ohji, T., Jeong, Y-K., Choa, Y-H. and Niihara, K., J. Am. Ceram. Soc. 81, 1453 (1998).CrossRefGoogle Scholar
25Hirano, T. and Niihara, K., Mater. Lett. 22, 249 (1995).CrossRefGoogle Scholar
26Sekino, T., Nakajima, T., Ueda, S. and Niihara, K., J. Am. Chem. Soc. 80, 1139 (1997).Google Scholar
27Herrmann, M., Schuber, C., Rendtel, A. and Hubner, H., J. Am. Ceram. Soc. 81, 1095 (1998).CrossRefGoogle Scholar
28Sternitzke, M., Derby, B. and Brook, R., J. Am. Ceram. Soc. 81, 41 (1998).CrossRefGoogle Scholar
29Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K. and Niihara, K., Nature 344,421 (1990).CrossRefGoogle Scholar
30Dusza, J., Sajgalik, P. and Steen, M., J. Am. Ceram. Soc. 82, 3613 (1999).CrossRefGoogle Scholar
31Besson, J-L., Mayne, M., Bahlourlier, D. and Goursat, P., J. Eur. Ceram. Soc. 18, 1893 (1998).CrossRefGoogle Scholar
32Sakaguchi, S., Wakai, F. and Matsuno, Y., J. Ceram. Soc. Jpn. 95, 476 (1987).Google Scholar
33Evans, A.G. and Rana, A., Acta Metall. 28, 129 (1980).CrossRefGoogle Scholar
34Chu, C., Singh, J.P. and Roubort, J.L., J. Am. Chem. Soc. 86, 1349 (1993).Google Scholar
35Cheong, D-S., Kwang, K-T. and Kim, C-S., J. Am. Ceram. Soc. 82, 981 (1999).CrossRefGoogle Scholar
36Rendtel, A.R., Hubner, H., Herrmann, M. and Shubert, C., J. Am. Ceram. Soc. 81, 1109 (1998).CrossRefGoogle Scholar
37Park, H-J., Kim, H-E. and Niihara, K., J. Eur. Ceram. Soc. 18, 907 (1998).CrossRefGoogle Scholar
38Brozek, V. and Hubacek, M., J. Solid State Chem. 100, 120 (1992).CrossRefGoogle Scholar
39Lipp, A., Schwetz, K.A. and Hunold, K., J. Eur. Ceram. Soc. 5, 3 (1989).CrossRefGoogle Scholar
40Paine, R.T. and Nalula, C.K., Chem. Rev. 90, 73 (1990).CrossRefGoogle Scholar
41Alkoy, S., Toy, C., Gonul, T. and Tekin, A., J. Eur. Ceram. Soc. 17,1415 (1997).CrossRefGoogle Scholar
42Sakaguchi, S., Murayama, N., Kodama, Y. and Wakai, F., J. Mater. Sci. Lett. 10, 282 (1991).CrossRefGoogle Scholar