Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.246 Render date: 2021-12-01T04:54:56.418Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors

Published online by Cambridge University Press:  31 January 2011

P. Kumar
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
K. H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

The feasibility of transforming shaped Mg–Al2O3-bearing precursors into monolithic spinel (MgAl2O4) bodies with a retention of shape and dimensions has been demonstrated.Dense, shaped precursors (disks, bars) were fabricated by the pressureless infiltration of molten Mg into porous Al2O3 preforms. After solidification (and machining, in the case of bar-shaped specimens), the Mg-bearing precursors were oxidized in flowing O2 (g) at 430–700 °C. Postoxidation annealing at 1200 °C resulted in the conversion of MgO and Al2O3 into MgAl2O4. After sintering at 1700 °C, spinel bodies that retained the precursor dimensions (to within 0.65%) were produced. Phase and microstructural analyses at various stages of processing are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Phase Diagrams in Advanced Ceramics, edited by Alper, A. M. (Academic Press, San Diego, CA, 1995), p. 23.Google Scholar
2.Hing, P., J. Mater. Sci. 11, 19191926 (1976).CrossRefGoogle Scholar
3.Bratton, R. J., Ceram. Bull. 57 (7), 283286 (1974).CrossRefGoogle Scholar
4.Sato, Y. and Kingery, W. D., Sumitomo Search, No. 55, (1994), pp. 4050.Google Scholar
5.Artelt, P., Keram. Z. 45 (9), 538554 (1993).Google Scholar
6.Kettner, P. and Christof, G., Radex Rundsch., [1], 3–11 (1986).Google Scholar
7.Glazacheva, M. V., Cherepenov, A. M., Medvedovskii, E.Ya., and Kharitonov, F.Ya., Glass Ceram, 40 (3–4), 158161 (1983).CrossRefGoogle Scholar
8.Shubin, V. I., Nikanorov, V. I., Ogneupory, [2], 18–20 (1996).Google Scholar
9.Moertl, G., Olbrich, M., Polesnig, W., and Zednicek, W., Zkg. International (English Translation) 39 (7), 394397 (1986).Google Scholar
10.Tassot, P., Koenig, G., Seifert, F. A., and Liefau, F., J. Mater. Sci. 21 (10), 34793482 (1986).CrossRefGoogle Scholar
11.Schreyer, W. and Schairer, J. F., J. Petrol. 2 (3), 324406 (1961).CrossRefGoogle Scholar
12.Phase Diagrams for Ceramists (The American Ceramic Society, Westerville, OH, 1985), Vol. 1, Fig. 712, p. 246.Google Scholar
13.Alper, A. M., McNally, R. N., Ribbe, P. G., and Doman, R. C., J. Am. Ceram. Soc. 45 (6), 263268 (1962).CrossRefGoogle Scholar
14.Roy, D. M., Roy, R., and Osborn, E. F., Am. J. Sci. 251, 337361 (1953).CrossRefGoogle Scholar
15.Osborn, E. F., J. Am. Ceram. Soc. 36 (5), 147151 (1953).CrossRefGoogle Scholar
16.Henrikson, A. F. and Kingery, W. D., Ceramurgia Int. 5 (1), 1117 (1979).CrossRefGoogle Scholar
17.Herald, P. G. and Smothers, W. J., J. Am. Ceram. Soc. 37 (8), 351353 (1954).CrossRefGoogle Scholar
18.Reig, P., Demazeau, G., and Naslain, R., J. Mater. Sci. 32 (16), 41894194 (1997).CrossRefGoogle Scholar
19.Claussen, N., Z. Werkstofftech. 13 (2), 138147 (1982).CrossRefGoogle Scholar
20.Claussen, N. and Rühle, M., Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, pp. 137163.Google Scholar
21.Hoyer, J. L., Bennett, J. P., Liles, K. J., Ceram. Eng. Sci. Proc. 11 (9–10), Pt. 2, 14231439 (1990).CrossRefGoogle Scholar
22.Ibarra, A., Vila, R., and Garner, F. A., J. Nucl. Mater. 233–237, Pt. B, 13361339 (1996).CrossRefGoogle Scholar
23.Molla, J., Ibarra, A., and Hodgson, E. R., J. Nucl. Mater. 212–215, Pt. B, 11131118 (1994).CrossRefGoogle Scholar
24.Kanzaki, S. and Hamano, K., TELCOM Report (Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Japan, 1978), Vol. 1, No. 3, pp. 2734.Google Scholar
25.Messier, D. R. and Gazza, G. E., Ceram. Bull. 51 (9), 692694 (1972).Google Scholar
26.Mitchell, P. W. D., J. Am. Ceram. Soc. 55 (9), 484 (1972).CrossRefGoogle Scholar
27.Katanic-Popovic, J., Miljevic, N., and Zec, S., Ceram. Int. 17 (1), 4952 (1991).CrossRefGoogle Scholar
28.Yamaguchi, D., Taguchi, H., and Shimizu, K., Polyhedron 6 (9), 17911796 (1987).CrossRefGoogle Scholar
29.Bratton, R. J., Ceram. Bull. 48 (8), 759762 (1969).Google Scholar
30.Kainarskii, I. S. and Degtyareva, E. V., Zh. Prikl. Khim. 36 (1), 225227 (1963).Google Scholar
31.Lepkova, D., Baatarjav, A., and Pavlova, L., Interceram. 42 (2), 8992 (1993).Google Scholar
32.Vereschagin, V. I., Zelinskii, V.Yu., and Pogrebenkov, V. M., Zhurnal. Prikladnoi Khimii 52 (5), 964970 (1979).Google Scholar
33.Hlavac, J., Reactivity of Solids, edited by deBoer, J. H. (Elsevier Press, New York, 1961), pp. 129137.Google Scholar
34.Armijo, J. S., Oxid. Met. 1 (2), 171178 (1969).CrossRefGoogle Scholar
35.Rossi, R. C. and Fulrath, R. M., J. Am. Ceram. Soc. 46 (3), 145149 (1963).CrossRefGoogle Scholar
36.Bratton, R. J., J. Am. Ceram. Soc. 54 (3), 141143 (1971).CrossRefGoogle Scholar
37.Bratton, R. J., J. Am. Ceram. Soc. 57 (7), 283286 (1974).CrossRefGoogle Scholar
38.Reed, J. S., Principles of Ceramics Processing (John Wiley & Sons, New York, 1995), pp. 418491, 525–541.Google Scholar
39.Bailey, J. T. and Russell, R., Jr., Ceram. Bull. 47 (11), 10251029 (1968).Google Scholar
40.Dunaitseva, T. V., Romanovski, L. B., Potap, E. G., Savchenko, Y. I., Perepelitsyn, V. A., Seliverstov, N. F., and Galimov, G. G., Ogneupory, (11), 6–9 (1990).Google Scholar
41.Sandhage, K. H., U.S. Patent No. 5,447,291, Sept. 5, 1995.Google Scholar
42.Kumar, P. and Sandhage, K. H., “Synthesis and Characterization of Shaped Magnesium Aluminate,” presented at the 98th Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 16, 1996.Google Scholar
43.Pilling, N. B. and Bedworth, R. E., J. Inst. Metals 29 (1), 529591 (1923).Google Scholar
44.Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals (Academic Press, San Diego, CA, 1962), pp. 3941, 208–211.Google Scholar
45.Byalobzhskii, A. U. and Golovanov, Yu.N., High Temperature Corrosion (Nauka Publishers, Moscow, 1973), pp. 2634.Google Scholar
46.Leontis, T. E. and Rhines, F. N., Trans. Am. Inst. Mining Met. Eng. (AIMEE) 166, 166285 (1946).Google Scholar
47. JCPDS cards: #35–821 for Mg, #1–1128 for Mg0.59Al0.41, #45–946 for MgO, #43–1484 for Al2O3, #21–1152 for MgAl2O4.Google Scholar
48.Newkirk, M. S., Urquhart, A. W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1 8189 (1986).CrossRefGoogle Scholar
49.Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urquhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8 (7–8), 879885 (1987).CrossRefGoogle Scholar
50.Claussen, N., Le, T., and Wu, S., J. Eur. Ceram. Soc. 5 (1), 2935 (1989).CrossRefGoogle Scholar
51.Wu, S. and Claussen, N., J. Am. Ceram. Soc. 74 (10), 24602463 (1991).CrossRefGoogle Scholar
52.Munir, Z. A., Ceram. Bull. 67 (2), 342349 (1988).Google Scholar
53.Merzhanov, A. G., and Borovinskaya, I. P., Dokl. Akad. Nauk. SSSR 204, 429432 (1972).Google Scholar
54.Breslin, M. C., Ringnalda, J., Xu, L., Fuller, M., Seeger, J., Daehn, G. S., Otani, T., and Fraser, H. L., Mater. Sci. Eng. A 195 (1–2), 113119 (1995).CrossRefGoogle Scholar
55.Breslin, M. C., U.S. Patent No. 5,214,011, May 25, 1993.Google Scholar
56.Ewsuk, K. G., Glass, S. J., Loehman, R. E., Tomsia, A. P., Fahrenholtz, W. G., Met. Mater. Trans. A 27A (8), 21222129 (1996).CrossRefGoogle Scholar
57.Fahrenholtz, W. G., Ewsuk, K. G., Ellerby, D. T., and Loehman, R. E., J. Am. Ceram. Soc. 79 (9), 24972499 (1996).CrossRefGoogle Scholar
58.Fahrenholtz, W. G., Ewsuk, K. G., Loehman, R. E., and Tomsia, A. P., Met. Mater. Trans. A 27A (8), 21002104 (1996).CrossRefGoogle Scholar
59.Loehman, R. E., Ewsuk, K., and Tomsia, A. P., J. Am. Ceram. Soc. 79 (1), 2732 (1996).CrossRefGoogle Scholar
60.Garcia, D. E., Bruhn, J., Schicker, S., Janssen, R., Claussen, N., Ceram. Trans. 79, 219224 (1996).Google Scholar
61.Claussen, N., Janssen, R., and Garcia, D. E., J. Mater. Res. 11, 28842888 (1996).CrossRefGoogle Scholar
62.Sandhage, K. H., U.S. Patent No. 5,259,885, Nov. 9, 1993.Google Scholar
63.Schmutzler, H. J. and Sandhage, K. H., Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by Ravi, V. A., Srivatsan, T. S., and Moore, J. J. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1994), pp. 113124.Google Scholar
64.Schmutzler, H. J. and Sandhage, K. H., Ceram. Eng. Sci. Proc. 15 (4), 95103 (1994).CrossRefGoogle Scholar
65.Schmutzler, H. J. and Sandhage, K. H., Met. & Mater. Trans. B, 26B, 135148 (1995).CrossRefGoogle Scholar
66.Allameh, S. M., and Sandhage, K. H., J. Am. Ceram. Soc. 80 (12), 31093126 (1997).CrossRefGoogle Scholar
67.Zhang, X-D., Sandhage, K. H., and Fraser, H. L., J. Am. Ceram. Soc., in press.Google Scholar
68.Sandhage, K. H., U.S. Patent No. 5,318,725, June 7, 1994.Google Scholar
69.Anthony, M. M. and Sandhage, K. H., J. Mater. Res. 8, 29682977 (1993).CrossRefGoogle Scholar
70.Schmutzler, H. J., Sandhage, K. H., Nava, J. C., J. Am. Ceram. Soc. 79 (6), 15751584 (1996).CrossRefGoogle Scholar
71.Ward, G. A. and Sandhage, K. H., J. Am. Ceram. Soc. 80 (6), 15081516 (1997).CrossRefGoogle Scholar
72.Yamada, Y., Murasaki, S., Suganuma, M., and Mizutani, U., Jpn. J. Appl. Phys. 27 (5), L802–L803 (1988).CrossRefGoogle Scholar
73.Sandhage, K. H., Masur, L. J., Smith, G. D., Poole, J. M., and McKimpson, M. G., Proc. Symp. High Temp. Superconducting Compounds III, edited by Whang, S. H., DasGupta, A., and Collings, E. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1991), pp. 347362.Google Scholar
74.Sandhage, K. H., J. Electrochem. Soc. 139 (6), 16621671 (1992).CrossRefGoogle Scholar
75.Otto, A., Craven, C., Daly, D., Podtburg, E. R., Schreiber, J., and Masur, L. J., J. Metals 45 (9), 4852 (1993).Google Scholar
76.Masur, L. J., Podtburg, E. R., Craven, C. A., Otto, A., Wang, Z. L., and Kroeger, D. M., J. Metals 46 (12), 2830 (1994).Google Scholar
77.Chung, F. H., J. Appl. Crystallog. 7, Pt. 6, 519525 (1974).CrossRefGoogle Scholar
78.Chung, F. H., J. Appl. Crystallog. 8, Pt. 1, 1719 (1975).CrossRefGoogle Scholar
79.Copeland, L. E. and Bragg, R. H., Anal. Chem. 30 (2), 196201 (1958).CrossRefGoogle Scholar
80.Murray, J. L., Bull. Alloy Phase Diagrams 3 (1), 6074 (1982).CrossRefGoogle Scholar
81.Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., Thermophysical Properties of Matter: Thermal Expansion (Nonmetallic Solids) (Plenum Press, New York, 1975), Vol. 13, pp. 176, 288, 479.Google Scholar
82.Lakshman, B. B., Fahrenholtz, W. F., Ewsuk, K. G., and Loehman, R. E., “Formation and Microstructures of Mg-Ceramic Composites,” Paper BP-35–96, presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN, April 16, 1996.Google Scholar
83.Binary Alloy Phase Diagrams, edited by Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), Vol. 1, pp. 129131.Google Scholar
84.Pankratz, L. B., Stuve, J. M., and Gokcen, N. A., “Thermodynamic Data for Mineral Technology” (U.S. Dept. of the Interior, Bureau of Mines, 1984), Bulletin 677.Google Scholar
85.Gourishankar, K. V., Ranjbar, M. K., and Pierre, G. R. St., J. Phase Equil. 14 (5), 601611 (1993).CrossRefGoogle Scholar
86.Carter, R. E., J. Chem. Phys. 34 (6), 20102015 (1961).CrossRefGoogle Scholar
87.Carter, R. E., J. Chem. Phys. 35 (3), 11371138 (1961).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *